



# The Shellfish official control monitoring programmes for Scotland

Summary report for 2021

Authors: Lewis Coates<sup>(1)</sup>, Sarah Swan<sup>(2)</sup>, Lesley Bickerstaff<sup>(1)</sup>, Charlotte Ford<sup>(1)</sup>, Tina Jones<sup>(1)</sup> and Sean Panton<sup>(3)</sup>

- (1) Cefas Laboratory, Barrack Road, Weymouth, Dorset, DT4 8UB
- (2) The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll, PA37 1QA
- (3) Fera Science Ltd., National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ

Date: March 2022



# © Crown copyright 2022

This information is licensed under the Open Government Licence v3.0. To view this licence, visit <a href="https://www.nationalarchives.gov.uk/doc/open-government-licence/">www.nationalarchives.gov.uk/doc/open-government-licence/</a>

This publication is available at <a href="www.gov.uk/government/publications">www.gov.uk/government/publications</a>

www.cefas.co.uk

### **Cefas Document Control**

| Submitted to:                         | Graham Ewen, Food Standards Scotland (FSS)                                                                                                                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date submitted:                       | 08/04/2022                                                                                                                                                                                                                                  |
| Project Manager:                      | Karen Litster                                                                                                                                                                                                                               |
| Report compiled by:                   | Lewis Coates, Sarah Swan, Lesley Bickerstaff, Charlotte Ford, Tina Jones and Sean Panton                                                                                                                                                    |
| Quality control by:                   | M. Algoet, 08/04/2022                                                                                                                                                                                                                       |
| Approved by and date:                 | K. Litster, 08/04/2022                                                                                                                                                                                                                      |
| Version:                              | FINAL                                                                                                                                                                                                                                       |
| Classification:                       | Official                                                                                                                                                                                                                                    |
| Recommended citation for this report: | Coates L., Swan. S, Bickerstaff L., Ford C. and Panton S. (2021). The Shellfish official control monitoring programmes for Scotland. Summary report for 2021. Cefas Project Report for FSS (Contract C7711/C7712/C7713/C7714/C7715), 38 pp. |

#### **Version control history**

| Version  | Author                                                 | Date       | Comment                                            |
|----------|--------------------------------------------------------|------------|----------------------------------------------------|
| Draft V1 | L. Coates, S. Swan, L. Bickerstaff, C. Ford, S. Panton | 14/02/2022 | Draft for QC                                       |
| Draft V2 | M. Algoet                                              | 22/02/2022 | QC                                                 |
| Draft V3 | L. Coates                                              | 28/02/2022 | Minor edits to address QC comments                 |
| Draft V4 | K. Litster                                             | 28/02/2022 | Draft submitted to FSS                             |
| Draft V5 | L. Coates                                              | 06/04/2022 | FSS comments addressed and correction to Figure 3. |
| Draft V5 | K. Litster                                             | 06/04/2022 | Draft submitted to FSS                             |
| Final V1 | K.Litster                                              | 08/04/2022 | Final approved by FSS                              |

Page left intentionally blank

### **Contents**

| 1. | Inti | roduc | tion                                                              | 8  |
|----|------|-------|-------------------------------------------------------------------|----|
| 2. | Se   | ction | 1: Toxin and Phytoplankton summary                                | 10 |
|    | 2.1. | lipo  | philic toxins                                                     | 12 |
|    | 2.1  | .1.   | OA/DTX/PTX group                                                  | 12 |
|    | 2.1  | .2.   | AZA group                                                         | 14 |
|    | 2.1  | .3.   | YTX group                                                         | 14 |
|    | 2.1  | .4.   | Phytoplankton associated with the production of lipophilic toxins | 15 |
|    | 2.2. | PSI   | o toxins                                                          | 16 |
|    | Ph   | ytop  | ankton associated with the production of PSP toxins:              | 17 |
|    | 2.3. | ASI   | o toxins                                                          | 20 |
|    | Ph   | ytop  | ankton associated with the production of ASP toxins               | 20 |
|    | 2.4. | Oth   | er potentially harmful phytoplankton                              | 21 |
|    | 2.5. | Pro   | gramme review & recommendations                                   | 22 |
|    | 2.5  | 5.1.  | Toxin monitoring                                                  | 22 |
|    | 2.5  | 5.2.  | Phytoplankton monitoring                                          | 22 |
| 3. | Se   | ction | 2: <i>E.coli</i> summary                                          | 23 |
| ,  | 3.1. | Sar   | nple collections and analyses                                     | 23 |
| ;  | 3.2. | Res   | sults by local authority region                                   | 24 |
|    | 3.2  | 2.1.  | Argyll & Bute                                                     | 24 |
|    | 3.2  | 2.2.  | Comhairle Nan Eilean Siar - Lewis & Harris                        | 27 |
|    | 3.2  | 2.3.  | Comhairle Nan Eilean Siar - Uist & Barra                          | 28 |
|    | 3.2  | 2.4.  | Dumfries & Galloway                                               | 29 |
|    | 3.2  | 2.5.  | East Lothian                                                      | 29 |
|    | 3.2  | 2.6.  | Fife                                                              | 30 |

|    | 3.2.7.   | Highland - Lochaber              | 30 |
|----|----------|----------------------------------|----|
|    | 3.2.8.   | Highland- Ross and Cromarty      | 31 |
|    | 3.2.9.   | Highland - Skye and Lochalsh     | 31 |
|    | 3.2.10.  | Highland - Sutherland            | 32 |
|    | 3.2.11.  | North Ayrshire                   | 32 |
|    | 3.2.12.  | Orkney Islands                   | 32 |
|    | 3.2.13.  | Shetland Islands                 | 33 |
|    | 3.2.14.  | South Ayrshire                   | 36 |
|    | 3.3. Out | with results in 2021             | 36 |
| 4. | Section  | 3: Chemical contaminants summary | 38 |

#### **Glossary**

ASP Amnesic Shellfish Poisoning

AZA Azaspiracid DA Domoic Acid

DSP Diarrhetic Shellfish Poisoning

DTX Dinophysistoxin

dcSTX decarbamoyl saxitoxin
EC European Commission
EU European Union
Fera Fera Science Limited
FSS Food Standards Scotland

GTX Gonyautoxin

HPLC High Performance Liquid Chromatography

LA Local Authority

LC-MS/MS Liquid Chromatography with tandem Mass Spectrometry

LOD Limit of detection
LOQ Limit of quantitation
LT(s) Lipophilic Toxin(s)

MPL Maximum Permitted Level

ND Not Detected NEO Neosaxitoxin OA Okadaic Acid

PAHs Polycyclic aromatic hydrocarbons
PCB Ortho-substituted PCB (non planar)

PCDD/F Polychlorinated dibenzo-p-dioxin/ polychlorinated dibenzofuran

(dioxins)

PSP Paralytic Shellfish Poisoning

PTX Pectenotoxin PTX2 Pectenotoxin 2

PTX2sa Pectenotoxin 2 seco-acid

RL Reporting limit

RMP Representative Monitoring Point SRSL SAMS Research Services Ltd

SSQC SSQC Ltd STX Saxitoxin YTX Yessotoxin

# 1. Introduction

This report describes the results of the Scottish Official Control Monitoring Programmes delivered by the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and partners for the period 1<sup>st</sup> January to 31<sup>st</sup> December 2021.

The programmes were delivered on behalf of Food Standards Scotland (FSS), the national competent authority for food safety and were aimed at delivering the testing required for the statutory monitoring of biotoxins, *E.coli* and chemical contaminants in shellfish and for the identification and enumeration of potentially harmful algal species in selected shellfish harvesting areas, as described in European Commission (EC) regulations 2017/625 and 2074/2005.

The co-ordination of the programme, its logistics, toxin analyses and the majority of *E. coli* analyses were conducted by Cefas, whilst phytoplankton analyses were performed by SAMS Research Services Ltd. (SRSL) in Oban, chemical contaminants analyses by Fera Science Ltd (Fera) in York and *E. coli* analyses for Shetland and Orkney (Westray) only by SSQC Ltd in Scalloway. These laboratories were contracted by Cefas under the scope of the 'Shellfish Partnership'.

A summary of these programmes and their results are presented in the following sections of this report:

- Section 1: Toxin and phytoplankton monitoring programme
- Section 2: E. coli monitoring programme
- Section 3: Chemical contaminants monitoring programme

A total of 4,206 shellfish samples and 1,312 water samples were collected for the purpose of the 2021 Scottish official control monitoring programmes. Since the 1st of April 2018, sampling officers from Hall Mark Meat Hygiene (HMMH) have collected or arranged collection for all samples from all geographic locations, under a new contract arrangement with Cefas. For the purpose of this report and in line with FSS protocol, a 'verified' shellfish sample is defined as a sample collected from the agreed monitoring point by an authorised sampling officer. Samples 'verified from shore' are defined as samples collected by harvesters under the supervision of the authorised sampling officer. Such arrangements are implemented when sampling officers are unable to accompany the harvester to the location of the monitoring point at the time of collection. The harvester can be witnessed from shore by the sampling officer. Where collection from the shellfish bed cannot be witnessed from the shore by the sampling officer (due to the remoteness of the shellfish bed or the lack of suitable and accessible vantage point), the samples are recorded as 'unverified'.

The delivery of the 2021 monitoring programme continued throughout the Covid-19 pandemic with service maintained and delivered in a COVID secure manner.

Only <0.09% of the biotoxin samples and 2.9% of *E. coli* samples were rejected as unsuitable for analysis on arrival at the laboratories. No water samples were rejected. All chemical contaminants samples were suitable.

All analyses followed the approved methods laid out in national legislation and specified by FSS for the purpose of this programme. All methods were accredited to ISO17025:2017 standards at the testing laboratories. Amnesic shellfish poisoning toxins (ASP) were monitored in 1002 samples, lipophilic toxins (LT) in 2,136 samples and paralytic shellfish poisoning toxins (PSP) in 1,334 samples. 1,895 samples were tested for *E. coli*, 26 for heavy metals (lead, cadmium and mercury), 20 for PAHs and 13 for dioxins and PCBs.

All results were reported to FSS' specifications and met the required FSS turnaround times. Specifically:

- 97.7% of all toxin results were reported within 1 working day of sample receipt,
   99.9% within 2 working days, 100% withing 3 working days;
- 100% of phytoplankton results were reported within 3 days of sample receipt;
- 99% of E. coli actionable results ('outwith') were reported within 3 working days of onset of analysis;
- 100% of E. coli non-actionable results were reported within 5 working days of onset of analysis;
- Draft chemical contaminant report produced by end June 2021.

The results of the monitoring programme are presented in each section of this report. In summary:

- 225 samples breached the maximum permitted limits (MPL) for lipophilic toxins (OA/DTX/PTX group only), 13 samples breached the MPL for PSP toxins and no samples breached the MPL for ASP toxins (see section 1).
- Outwith *E. coli* results were reported in 5.5% of the analyses undertaken in 2021 (see section 2).
- All chemical contaminants results were below the regulatory maximum limits (see section 3).

# 2. Section 1: Toxin and Phytoplankton summary

This section provides a summary of the toxin and phytoplankton monitoring undertaken in Scottish shellfish under the FSS programme in 2021. The full results of the FSS toxin and phytoplankton monitoring programmes are available on the <u>FSS website</u>. For results for individual RMPs (Representative Monitoring Points), please visit the Scotland's Aquaculture website at the following links:

- Biotoxin monitoring
- Phytoplankton monitoring

A total of 2,220 bivalve shellfish samples from 87 inshore sampling locations (Figure 1) were submitted to Cefas for toxin analyses in 2021. They comprised of; common mussels (1,411), Pacific oysters (525), razors (64), common cockles (142), surf clams (61) and native oysters (17). Three of these samples (representing less than 0.09% of those received) were rejected on arrival at the laboratory. One sample had perished on arrival, one was sent in error and the other sample contained less than 10 individuals. Three samples of processed scallops (all king scallops - all adductor and roe) were also collected from commercial establishments in the Dumfries and Galloway region under the scope of the FSS onshore verification programme and were submitted for toxin analysis in 2021.

A total of 1,312 seawater samples from 43 inshore sampling locations (Figure 2) were submitted to SAMS Enterprise for the identification and enumeration of potentially harmful algal species in 2021.

All results were compared to the maximum permitted levels (MPL) (Table 1) stipulated in retained EC regulation 853/2004. Toxin test results must not exceed these limits in either whole body or any edible part separately. Please note that for ease of reading, in the text of this report, toxin concentrations are shown as mg/kg or  $\mu$ g/kg, without reference to the toxin parent.

Table 1: Maximum permitted limits of toxins in shellfish flesh.

| Toxin groups                               | Maximum permitted limits (MPL)                                                                                                                                                                                                                                                                                    |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amnesic shellfish poisoning (ASP) toxins   | 20 mg of Domoic/epi-domoic acid per kg of shellfish flesh                                                                                                                                                                                                                                                         |
| Lipophilic toxins (LTs)                    | For Diarrhetic shellfish poisoning toxins (DSP) and pectenotoxins (PTX) together: 160 µg of okadaic acid (OA) equivalents per kg of shellfish flesh OR For Yessotoxins (YTX): 3.75 mg of YTX equivalents per kg of shellfish flesh OR For Azaspiracids (AZA): 160 µg of AZA equivalents per kg of shellfish flesh |
| Paralytic shellfish poisoning (PSP) toxins | 800 μg of saxitoxin (STX) equivalents per kg of shellfish flesh                                                                                                                                                                                                                                                   |



Figure 1. Scottish inshore shellfish sampling locations – Food Standards Scotland biotoxin monitoring programme in 2021



Figure 2. Scottish water sampling locations – Food Standards Scotland phytoplankton monitoring programme in 2021

# 2.1. lipophilic toxins

In total, lipophilic toxins (LTs) analyses were performed on 2133 inshore samples and 3 verification samples. Monitoring for LTs was conducted using an ISO17025 accredited liquid chromatography with tandem mass spectrometry (LC-MS/MS) method and results are summarised below.

225 inshore samples breached the MPL for lipophilic toxins (Table 1). As highlighted in previous <u>annual reports</u>, where the MPL for lipophilic toxins had been exceeded and sampling had occurred in the previous two to three weeks, the LC-MS/MS method provided an early warning, detecting low toxin levels prior to closure in the majority of cases. This indicates the methods performance and advantage as an early warning mechanism, when applied to risk management practices such as the <u>FSS "traffic light" guidance</u>.

#### 2.1.1.OA/DTX/PTX group

- OA/DTX/PTX group toxins were detected in 870 inshore samples, comprising of mussels (796 samples), surf clams (36), Pacific oysters (30), common cockles (6) and razors (2).
- 225 samples comprising of mussels (212 samples), surf clams (7) and Pacific oysters (6) from 38 sites (Figure 3) recorded results above the MPL in 2021. These results were recorded between June and October 2021.
- The highest level recorded during 2021 was 3035µg OA eq./kg, almost 19 times the regulatory limit, in a sample from Loch Eishort (Highland Council: Skye and Lochalsh) in early August 2021. Levels of OA/DTX/PTX group toxins at this site had started to rise in early May and increased to exceed the regulatory limit in mid June. The site recorded its second consecutive result below the MPL in mid December.
- Elsewhere, OA/DTX/PTX group toxins were detected below the MPL in a further 645 samples from 61 sites (Figure 4), between January and December 2021.
- No OA/DTX/PTX group toxins were detected in the Scallop verification samples received in 2021.



Figure 3. Inshore locations recording OA/DTX/PTX group results above the maximum permitted limit (>160µg OA eq./kg) in 2021



Figure 4. Inshore locations where toxins of OA/DTX/PTX group were detected below the maximum permitted limit (≤160µg OA eq./kg) in 2021

#### 2.1.2. AZA group

AZAs were detected in 1 inshore mussel sample collected from one Shetland site (Weisdale voe - see Figure 5) in October 2021. The level recorded was 105  $\mu$ g AZA1 eq./kg which is below the MPL.

#### 2.1.3.YTX group

YTXs were detected in 12 inshore cockle samples collected from one site in Argyll and Bute (Loch na Cille—see Figure 5) between July and November. All results were below the MPL (Table 1), with the highest level recorded as 1.8 mg YTXeq/kg in a sample taken on the 18<sup>th</sup> of July 2021.



Figure 5. Inshore locations where AZA ( ) and YTX ( ) group toxins were detected in 2021 (all below the maximum permitted limit levels (160 µg AZA1 eq./kg & 3.75 mg YTX eq./kg))

#### 2.1.4. Phytoplankton associated with the production of lipophilic toxins

- Dinophysis species were present in 562 (42.8%) of the 1,312 samples analysed during 2021 and were detected in every month, excluding January. They were observed at or above trigger level (set at 100 cells/L) in 269 samples (20.5%) between March and September. The majority of *Dinophysis* blooms occurred around the Scottish coast from June to August 2021, with 48.7% of the samples collected in July exceeding threshold counts. (Please note that in this report, references to *Dinophysis* species also include *Phalacroma rotundatum* (synonym *Dinophysis rotundata*) and that blooms are denoted as cell counts at or exceeding trigger level, where appropriate for individual species/genera).
- The earliest bloom of *Dinophysis* breaching trigger level was recorded at Kyle of Tongue (Highland: Sutherland) on 24<sup>th</sup> March.
- The densest bloom observed in 2021 occurred in Loch Kanaird (Highland: Ross & Cromarty) on 6<sup>th</sup> July at 15,620 cells/L. Relatively dense blooms (greater than 6,000

cells/L) were also recorded at other sites around the Highland region, namely Loch Laxford (Sutherland), Loch Torridon (Ross & Cromarty) and Loch Eishort (Skye & Lochalsh), in late June and early July. Further south in Argyll & Bute, *Dinophysis* was abundant in Loch na Cille and Kilfinichen Bay, with a bloom of 9,440 cells/L detected at the latter site on 6<sup>th</sup> September. Elsewhere in Scotland, *Dinophysis* blooms were frequently observed around Lewis & Harris from June to August. At this time, it was also abundant around most of the Shetland Islands, except for two sites in the north-east (on Yell) where trigger level was breached only once at each site in July.

- The total percentage of *Dinophysis* at or exceeding trigger level during the 2021 reporting period (20.5%) was slightly higher than in 2020 (19.5%).
- The benthic dinoflagellate *Prorocentrum lima* was present in 320 (24.4%) of the samples analysed. This species is generally detected more often in the sandy sediments of shallow bays where oyster cultivation takes place, although it can also grow epiphytically on substrates such as seaweed. *Prorocentrum lima* was recorded from March to November and was most abundant between May and September. It was reported at or above the trigger level (set at 100 cells/L) between March and October in 78 samples (5.9%). Since 2018, *Prorocentrum lima* has been frequently observed in Basta Voe Cove (Shetland Islands) and the densest bloom of 2021 at 8,280 cells/L was recorded at this site on 2<sup>nd</sup> August.
- Elsewhere around the coast, *Prorocentrum lima* blooms were noted regularly at several sites in Argyll & Bute and the Highland region, with a cell density of 3,680 cells/L reported from Loch Ailort (Highland: Lochaber) on 31<sup>st</sup> August.
- The dinoflagellate *Protoceratium reticulatum* was detected in 22 samples (1.7%) between March and September and was most abundant in July and August. It was observed most often in Loch na Cille (Argyll & Bute) and the 2021 maximum bloom density of 220 cells/L was recorded at this site on 11<sup>th</sup> August. No trigger level has been set for *Protoceratium reticulatum*.
- The dinoflagellate Lingulodinium polyedra is rarely abundant in Scottish coastal waters. In 2021 it was found on seven occasions (0.5 % of samples) at two locations, Loch na Cille (Argyll & Bute) and Brighouse Bay (Dumfries & Galloway) between July and September. The 2021 maximum concentration of 320 cells/L was recorded at Loch na Cille on 20<sup>th</sup> September. No trigger level has been set for Lingulodinium polyedra.

### 2.2. PSP toxins

A total of 1,331 inshore samples and 3 scallop verification samples were tested for paralytic shellfish poisoning (PSP) toxins in 2021. All samples were tested by an ISO17025 accredited high-performance liquid chromatography (HPLC) method and results are summarised below.

- Thirteen samples from seven monitoring sites (Figure 6) were found to contain PSP toxins above the MPL of 800µg STX eq./kg shellfish flesh. These comprised mussels (7 samples), Pacific oysters (2), razors (1) and cockles (3). The results were recorded from throughout June 2021 and were all detected in the north-west of mainland Scotland, the Outer Hebrides and one occurrence on the Orkney Isles.
- The highest level recorded was 2,632 μg/kg recorded in Pod 21 Loch Leurbost in a sample collected 09/06/21.
- PSP toxins above reporting levels, but below the MPL were detected in a further 11 samples comprising mussels (8 samples), cockles (1), Pacific oysters (1) and razors (1) from 9 separate pods (Figure 7). All occurrences were recorded between end June and mid September 2021.
- A further 15 samples (14 mussels and one cockles) were subjected to full quantitative analysis but returned results below the reporting limit for the test.
- The PSP toxin profiles predominantly consisted of the toxins Saxitoxin (STX), Gonyautoxins (GTX) 2&3, GTX1&4, Neosaxitoxin (NEO) and C toxins 1&2 (data not shown). Lower concentrations of GTX5 and dcSTX were also detected in some shellfish samples. Proportions of each toxin varied considerably, but the profiles were consistent with previous years, and similar to those expected from shellfish contaminated with *Alexandrium* as documented in Turner et al, 2014., with profiles dominated by GTX1&4, GTX2&3, NEO and STX.
- No quantifiable levels of PSP toxins were detected in the scallop verification samples.

#### Phytoplankton associated with the production of PSP toxins:

- Dinoflagellates belonging to the genus Alexandrium were observed in January and then from March to September. They were detected in 394 (30.0%) of the 1,312 samples analysed during 2021 and recorded at every site monitored for phytoplankton. Alexandrium cells were reported at or above the trigger level (set at 40 cells/L) in 271 samples (20.7%). Blooms were most frequently observed between June and August, and 36.7% of the samples analysed in June breached the Alexandrium trigger level.
- Similar to 2020, the earliest *Alexandrium* bloom of 2021 occurred at Loch Fyne: Otter Ferry (Argyll & Bute) on 8<sup>th</sup> March. An early bloom was also detected in Dales Voe (Shetland Islands) on 9<sup>th</sup> March. The densest *Alexandrium* bloom of 2021 occurred in Loch Laxford (Highland: Sutherland) on 14<sup>th</sup> June where a concentration of 4,480 cells/L was recorded. Dense blooms were also observed elsewhere around the Highland region in May and June, notably at Loch Glencoul (Sutherland), Loch Harport and Loch Eishort (Skye and Lochalsh), and Loch Sunart (Lochaber). In Lewis & Harris, *Alexandrium* at 2,440 cells/L was recorded in Loch Leurbost on 1<sup>st</sup> June, and in the Orkney Islands a bloom of 1,900 cells/L was detected on 8<sup>th</sup> August.

• The percentage of samples with *Alexandrium* counts at or above trigger level in 2021 (20.7%) was slightly higher than in 2020 (19.6%). However, the frequency of bloom detection appeared to be delayed slightly in 2021, with more blooms present between June and August, compared to the May to July peak of bloom abundance more typical of recent years.



Figure 6. Inshore locations recording PSP toxin results above the maximum permitted limit (>800µg STX eq./kg) in 2021



Figure 7. Inshore locations recording PSP toxin results below the maximum permitted limit (≤800µg STX eq./kg) in 2021

#### 2.3. ASP toxins

Analyses for amnesic shellfish poisoning (ASP) toxin were conducted on 999 inshore samples and 3 scallop verification samples. All samples were analysed by an ISO17025 accredited HPLC method. Results are summarised below.

- ASP toxins were detected in 65 inshore samples comprising of: common mussels (34 samples), Pacific oysters (20), common cockles (6), surf clams (4) and razors (1) (Figure 9). No samples exceeded the MPL in 2021.
- Low concentrations (between 1 and 8 mg/kg) were recorded throughout 2021.
   The peak period occurred between May & September, during which time ASP was detected in 53 samples.
- ASP toxins were detected in one of the scallop verification samples received in July 2021.

#### Phytoplankton associated with the production of ASP toxins

- Diatoms belonging to the genus *Pseudo-nitzschia* were detected in every month in 2021 and were present in 1,185 (90.3%) of the 1,312 samples analysed. Blooms (here referred to as cell densities exceeding the trigger level of 50,000 cells/L) were detected between March and September and were most frequently observed between June and September. *Pseudo-nitzschia* counts at or above the trigger level were recorded in 154 samples (11.7%), with 20.6% of the samples analysed in July exceeding this level.
- The earliest blooms of 2021 occurred in Argyll & Bute, with 70,153 cells/L detected in Loch na Cille on 15<sup>th</sup> March, and 260,971 cells/L in Loch Spelve on 23<sup>rd</sup> March. *Pseudo-nitzschia* mostly remained at background levels in the Shetland Islands up until late June when dense blooms became widespread for a period of about four weeks, followed by a second bloom period from late August into September. The densest *Pseudo-nitzschia* bloom of 2021 was recorded at Busta Voe (Shetland Islands) on 6<sup>th</sup> July, where cell counts reached 2,168,794 cells/L.
- Elsewhere around the coast, Pseudo-nitzschia in excess of one million cells/L was recorded from Loch Ailort (Highland: Lochaber) on 11<sup>th</sup> May, and similarly dense blooms were observed in Campbeltown Loch (Argyll & Bute) and at Fairlie (North Ayrshire) in mid July.
- The percentage of samples with *Pseudo-nitzschia* counts at or above trigger level in 2021 (11.7%) was higher than in 2020 (9.8%).



Figure 8. Inshore locations where ASP toxins were detected below the maximum permitted limit (>20mg/kg) in 2021

# 2.4. Other potentially harmful phytoplankton

The dinoflagellate *Prorocentrum cordatum* was detected in 554 samples (42.2%) analysed in 2021. It was observed from February through to November, and was most frequently recorded between May and June, being present in 71.6% of the May samples. *Prorocentrum cordatum* was widespread around the Scottish coast and found at all sites, but the densest blooms occurred around the Shetland Islands in June, with a maximum cell concentration of 324,460 cells/L recorded in Stream Sound on 23<sup>rd</sup> June. No trigger level has been set for this species.

The potentially problematic dinoflagellate *Karenia mikimotoi* was found in 254 (19.4%) of the samples analysed. It was present between March and October, but most frequently observed between July and September, being detected in 41.4% of the samples collected in September. This species is not an issue in terms of shellfish harvesting, as it does not produce biotoxins that are harmful to human health, although it may negatively impact aquaculture. It produces ichthyotoxins that can kill finfish, and dense blooms of the order of several million cells/L may result in both fish

and invertebrate mortality due to hypoxia. Cell abundance was much higher than in 2020, with a maximum density of 620,651 cells/L observed in Olna Firth (Shetland Islands) on 21<sup>st</sup> September.

## 2.5. Programme review & recommendations

#### 2.5.1. Toxin monitoring

Sampling and testing frequencies for toxin and phytoplankton monitoring are defined by FSS, as the competent authority, based on the results of risk assessments which FSS commissioned in 2004 (Holtrop & Horgan), 2008 (Holtrop) and 2016 (Holtrop et al.). The recommendations of the 2019 risk assessment led to testing frequencies been defined and implemented for each site separately. The aim of the review conducted for this report was to look at toxin occurrence over the last couple of years (based on the results of the FSS official monitoring alone as industry data was not available) and identify sites where the set testing frequency may need adjustment, as a result of a recent change to toxin incidence and levels at these sites.

During 2021, the detection rates of toxins was broadly similar to 2020 and levels detected prior to 2019. Areas listed below are recommended for review:

Pod 19: Loch Craignish Cockles: Trigger levels exceeded for LTs in October

Pod 21: Loch Leurbost: MPL exceeded for PSP in June

Pod 22: East Loch Tarbert: MPL exceeded for LTs in September/October

Pod 40: Loch Harport Inner: MPL exceeded for LTs in July

Pod 51: Kyle of Tongue: MPL exceeded for LTs in July

Pod 77: Traigh Mhor: MPL exceeded for PSP in June

Pod 138: Broad Bay Aiginish: MPL exceeded for PSP in June

Pod 157: Bay of Skaill: MPL exceeded for PSP in June

#### 2.5.2. Phytoplankton monitoring

The phytoplankton monitoring points used in 2021 were reviewed and suggested changes are outlined in Table 2 below, alongside FSS decision.

Table 2. Recommended changes to phytoplankton monitoring RMPs

| 2020 phytoplankton RMP         | Recommended phytoplankton RMP for 2021 | FSS decision (notes)                                                   |
|--------------------------------|----------------------------------------|------------------------------------------------------------------------|
| Pod 14: Loch Fyne: Otter Ferry | Pod139 Loch Riddon                     | Rejected – ongoing algal bloom present in Pod 14 at time of publishing |

# 3. Section 2: E.coli summary

This section provides a summary of the microbiological monitoring undertaken in Scottish shellfish under the FSS programme in 2021. All data generated under the Scottish shellfish harvesting classification programme is available on the <a href="Cefas">Cefas</a> <a href="Website">website</a>. E.coli results are also available on the <a href="Scotland's Aquaculture website">Scotland's Aquaculture website</a> and on the <a href="FSS">FSS'</a> website.

# 3.1. Sample collections and analyses

A total of 1,952 bivalve shellfish samples from 180 RMPs were submitted for microbiological analyses in 2021. 6.4% of the samples received were of unverified origin. The sampling locations covered classified production areas within 10 Local Authority regions (16 regional offices). The samples comprised of the species identified in Table 3.

Table 3. Number of samples collected for the FSS microbiological monitoring programme, by bivalve species in 2021

| Common name         | Latin name                             | No. samples received in 2021 | % of total |
|---------------------|----------------------------------------|------------------------------|------------|
| Common mussels      | Mytilus spp                            | 930                          | 47.6       |
| Pacific oysters     | Crassostrea gigas<br>(Magallana gigas) | 454                          | 23.3       |
| Common cockles      | Cerastoderma edule                     | 312                          | 16.0       |
| Razor clams         | Ensis spp                              | 200                          | 10.2       |
| Surf clams          | Spisula solida                         | 33                           | 1.7        |
| Native oysters      | Ostrea edulis                          | 10                           | 0.5        |
| Pullet carpet shell | Venerupis corrugata                    | 12                           | 0.6        |
| Carpet clams        | Venerupis pullastra                    | 1                            | 0.1        |

The majority of samples (94.7%) arrived at the laboratory within 48h of sample collection. When delays occurred, these were generally attributed to the time at which the samples were collected, thus missing the routine post office collection deadline, or to other events outside of the laboratory or sampling officers' control, such as inclement weather or transport network problems.

2.9% (*n*=57) of the samples received at the laboratories were rejected on arrival. The majority of rejections (n=54) were due to exceedance of the time/temperature criteria set out in FSS protocols.

All analyses were initiated within 48h of sample collection. Samples were analysed using the FSS specified method for enumeration of *E. coli* in shellfish (ISO 16649-3:2015 (ISO 2015)). Initial preparation of shellfish samples followed ISO 6887-3 (ISO 2003) and derivation of MPN results ISO 7218 (ISO 2007). Methods are accredited to ISO17025 standard. A total of 1,895 tests were undertaken in 2021.

All results were compared to the classification categories are set out in Table 4.

Table 4. Criteria for the classification of bivalve shellfish harvesting areas

| Classification category | Microbiological standard <sup>1</sup>                                                                                                                                                                                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class A                 | Samples of live bivalve molluscs from these areas must not exceed, in 80% of samples collected during the review period, 230 <i>E. coli</i> per 100 g of flesh and intra-valvular liquid  The remaining 20% of samples must not exceed 700 <i>E. coli</i> per 100 g of flesh and intra-valvular liquid <sup>2</sup> |
| Class B                 | Live bivalve molluscs from these areas must not exceed, in 90% of the samples, 4 600 MPN <i>E. coli</i> per 100 g of flesh and intra-valvular liquid. In the remaining 10% of samples, live bivalve molluscs must not exceed 46 000 MPN <i>E. coli</i> per 100 g of flesh and intra-valvular liquid <sup>3</sup>    |
| Class C                 | Live bivalve molluscs from these areas must not exceed 46 000 <i>E. coli</i> MPN per 100 g of flesh and intra-valvular liquid <sup>4</sup>                                                                                                                                                                          |

## 3.2. Results by local authority region

Summaries of samples received, rejected and providing results outwith of their classification are shown in Tables 5 to 18 for each classified production area in each local authority region.

### 3.2.1. Argyll & Bute

<sup>&</sup>lt;sup>1</sup> The reference method for analysis of *E. coli* is the detection and Most Probably Number (MPN) technique specified in EN/ISO 16649-3. Alternative methods may be used if they are validated against this reference method in accordance with the criteria in EN/ISO 16140 (Regulation (EC) 854/2004 as amended by Regulation (EC) 2285/2015).

<sup>&</sup>lt;sup>2</sup> Regulation (EC) 854/2004 as amended by Regulation (EC) 2285/2015.

<sup>&</sup>lt;sup>3</sup> Regulation (EC) 854/2004 as amended by Regulation (EC) 1021/2008

<sup>&</sup>lt;sup>4</sup> Regulation (EC) 854/2004

Table 5. E. coli samples received from Argyll & Bute Council area

| Production Area              | Site Name                       | Site              | Sample<br>Species         | Samples received | Outwiths | Rejected samples |
|------------------------------|---------------------------------|-------------------|---------------------------|------------------|----------|------------------|
| Ardencaple                   | Ardencaple cockles              | AB 818 2146<br>04 | Common cockles            | 13               | 4        | 0                |
| Campbeltown Loch             | Kildalloig Bay                  | AB 029 008<br>04  | Common cockles            | 12               | 3        | 0                |
| Castle Stalker               | Port Appin                      | AB 492 909<br>04  | Common cockles            | 12               | 2        | 0                |
| Coll Razors                  | Crossapol Bay                   | AB 837 2246<br>16 | Razors                    | 2                | 0        | 0                |
| Colonsay                     | The Strand (East)               | AB 041 1199<br>13 | Pacific oysters           | 12               | 1        | 1                |
| Colonsay                     | The Strand (West)               | AB 041 009<br>13  | Pacific oysters           | 1                | 0        | 0                |
| Colonsay East of the Strand  | Islands of Colonsay and Oransay | AB 774 1987<br>16 | Razors                    | 10               | 0        | 0                |
| Dunstaffnage Cockles         | Dunstaffnage Bay                | AB 696 1511<br>04 | Common cockles            | 12               | 0        | 0                |
| East Tarbert Bay             | Isle of Gigha                   | AB 541 972<br>13  | Pacific oysters           | 10               | 2        | 0                |
| Eilean an Atha               | Eilean an Atha                  | AB 877 2390<br>13 | Pacific<br>Oyster         | 17               | 1        | 0                |
| Eilean Gainimh               | Eilean Gainimh                  | AB 870 2379<br>24 | Pullet<br>Carpet<br>Shell | 12               | 0        | 1                |
| Eriska Shoal                 | Eriska Shoal Cockles            | AB 490 907<br>04  | Common cockles            | 12               | 2        | 0                |
| Eriska Shoal Carpet<br>Clams | Eriska Shoal Carpet<br>Clams    | AB 547 1006<br>02 | Carpet<br>Clams           | 1                | 0        | 0                |
| Ganavan Cockles              | Ganavan                         | AB 697 1512<br>04 | Common cockles            | 12               | 1        | 0                |
| Islay                        | Loch Gruinart<br>Craigens       | AB 094 011<br>13  | Pacific oysters           | 12               | 4        | 2                |
| Kerrera East                 | Ardantrive                      | AB 697 1513<br>04 | Common cockles            | 12               | 0        | 0                |
| Kerrera West                 | Oitir Mhor                      | AB 697 1514<br>04 | Common cockles            | 12               | 1        | 0                |
| Kilfinichen Bay              | Kilfinichen Bay                 | AB 695 1507<br>04 | Common cockles            | 12               | 1        | 0                |

| Loch A Chumhainn:<br>Inner Deep Site | Inner Deep Site             | AB 112 017<br>13  | Pacific oysters | 12 | 0 | 0 |
|--------------------------------------|-----------------------------|-------------------|-----------------|----|---|---|
| Loch A Chumhainn:<br>Outer           | Outer                       | AB 113 018<br>13  | Pacific oysters | 12 | 0 | 0 |
| Loch Craignish<br>Cockles            | Ardfern                     | AB 786 2028<br>04 | Common cockles  | 12 | 0 | 0 |
| Loch Creran Cockles                  | Loch Creran Cockles         | AB 729 1685<br>04 | Common cockles  | 13 | 2 | 0 |
| Loch Creran Upper<br>Oysters         | East - Barrington           | AB 129 021<br>13  | Pacific oysters | 12 | 1 | 0 |
| Loch Creran: Rubha<br>Mor            | Rubha Mor                   | AB 130 022<br>13  | Pacific oysters | 12 | 2 | 0 |
| Loch Fyne: Ardkinglas<br>Oysters     | The Shore                   | AB 147 036<br>13  | Pacific oysters | 12 | 2 | 0 |
| Loch Fyne: Otter Ferry               | Balliemore                  | AB 151 039<br>13  | Pacific oysters | 12 | 0 | 0 |
| Loch Fyne: Otter Point               | Otter Point                 | AB 714 1659<br>04 | Common cockles  | 12 | 0 | 0 |
| Loch Fyne: Stonefield<br>Oysters     | North Bay Oysters           | AB 435 840<br>13  | Pacific oysters | 7  | 1 | 0 |
| Loch Gair                            | Loch Gair Common<br>Cockles | AB 863 2347<br>04 | Common cockles  | 12 | 1 | 0 |
| Loch Linnhe                          | Loch Linnhe                 | AB 172 047<br>13  | Pacific oysters | 14 | 1 | 2 |
| Loch na Cille                        | Loch na Cille<br>Cockles    | AB 617 1204<br>04 | Common cockles  | 12 | 0 | 0 |
| Loch Na Keal                         | Eilean Liath                | AB 284 080<br>13  | Pacific oysters | 11 | 0 | 0 |
| Loch Na Keal West                    | Eilean Casach               | AB 286 082<br>13  | Pacific oysters | 12 | 0 | 0 |
| Loch Riddon Cockles                  | Loch Riddon Cockles         | AB 656 1409<br>04 | Common cockles  | 12 | 0 | 0 |
| Loch Spelve Cockles                  | North West Spelve           | AB 767 1963<br>04 | Common cockles  | 12 | 2 | 0 |
| Loch Spelve Croggan<br>Pier          | Croggan Pier                | AB 199 055<br>13  | Pacific oysters | 12 | 4 | 0 |
| Loch Spelve North                    | Ardura                      | AB 200 1915<br>08 | Common mussels  | 12 | 0 | 0 |
| Lynn of Lorn Sgeir<br>Liath          | Sgeir Liath                 | AB 318 068<br>13  | Pacific oysters | 13 | 0 | 1 |

| North Connel Cockles | Ledaig Point Cockles          | AB 758 1909<br>04 | Common cockles  | 12 | 0 | 0 |
|----------------------|-------------------------------|-------------------|-----------------|----|---|---|
| Oitir Mhor Bay       | Oitir Mhor                    | AB 308 701<br>13  | Pacific oysters | 12 | 0 | 0 |
| Porte Na Coite       | Porte Na Coite                | AB 876 2389<br>13 | Pacific oysters | 17 | 7 | 0 |
| Seil Point           | Poll a' Bhrochain<br>(Cyster) | AB 245 070<br>13  | Pacific oysters | 12 | 0 | 0 |
| Seil Sound East      | East of Balvicar              | AB 247 703<br>08  | Common mussels  | 9  | 2 | 0 |
| Seil Sound North     | Balvicar North                | AB 247 735<br>13  | Pacific oysters | 8  | 2 | 0 |
| Sound of Gigha       | Sound Of Gigha<br>Razors 2    | AB 515 1250<br>16 | Razors          | 6  | 0 | 0 |
| Tiree North          | Gott Bay                      | AB 835 2244<br>16 | Razors          | 2  | 0 | 0 |
| West Jura Razors     | Jura                          | AB 482 805<br>16  | Razors          | 13 | 0 | 2 |
| West Loch Tarbert    | Loup Bay                      | AB 299 084<br>13  | Pacific oysters | 10 | 0 | 0 |

# 3.2.2. Comhairle Nan Eilean Siar - Lewis & Harris

Table 6. E. coli samples received from Comhairle Nan Eilean Siar - Lewis & Harris

| Production Area               | Site Name        | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-------------------------------|------------------|-------------------|-------------------|------------------|----------|------------------|
| Broad Bay Aiginish            | Aiginish         | LH 743 1740<br>16 | Razors            | 12               | 0        | 2                |
| East Loch Tarbert             | Sound of Scalpay | LH 057 106<br>08  | Common mussels    | 13               | 0        | 1                |
| Loch Erisort: Garbh<br>Eilean | Garbh Eilean     | LH 357 747<br>08  | Common mussels    | 12               | 3        | 0                |
| Loch Erisort: Gob<br>Glas     | Gob Glas         | LH 357 711<br>08  | Common mussels    | 12               | 4        | 0                |
| Loch Leurbost                 | Eilean Mhiabhaig | LH 168 732<br>08  | Common mussels    | 12               | 3        | 0                |
| Loch Leurbost:<br>Crosbost    | Site 1 Crosbost  | LH 339 795<br>13  | Pacific oysters   | 13               | 0        | 1                |
| Loch Roag - Gob<br>Sgrithir   | Gob Sgrithir     | LH 829 2215<br>08 | Common mussels    | 12               | 0        | 0                |

| Loch Roag:<br>Barraglom          | Loch Barraglom     | LH 185 120<br>08 | Common mussels | 12 | 0 | 0 |
|----------------------------------|--------------------|------------------|----------------|----|---|---|
| Loch Roag:<br>Ceabhagh           | Keava              | LH 381 772<br>08 | Common mussels | 12 | 0 | 0 |
| Loch Roag: Drovinish             | Loch Drovinish     | LH 186 121<br>08 | Common mussels | 12 | 0 | 0 |
| Loch Roag: Eilean<br>Chearstaigh | Eilean Scarastaigh | LH 344 697<br>08 | Common mussels | 12 | 0 | 0 |
| Loch Roag: Eilean<br>Teinish     | Eilean Teinish     | LH 338 720<br>08 | Common mussels | 11 | 0 | 0 |
| Loch Roag: Linngeam              | Cliatasay          | LH 187 699<br>08 | Common mussels | 12 | 0 | 0 |
| Loch Roag: Miavaig               | Miavaig            | LH 188 123<br>08 | Common mussels | 12 | 0 | 0 |
| Loch Roag: Torranish             | Loch Torranish     | LH 189 124<br>08 | Common mussels | 12 | 1 | 0 |
| Loch Seaforth                    | Loch Seaforth      | LH 193 126<br>08 | Common mussels | 13 | 0 | 1 |
| Seilebost                        | Seilebost          | LH 249 129<br>04 | Common cockles | 14 | 1 | 2 |

# 3.2.3. Comhairle Nan Eilean Siar - Uist & Barra

Table 7. E. coli samples received from Comhairle Nan Eilean Siar - Uist & Barra

| Production Area      | Site Name                          | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|----------------------|------------------------------------|-------------------|-------------------|------------------|----------|------------------|
| Ardmhor              | Ardmhor                            | UB 874 2385<br>13 | Pacific oysters   | 17               | 0        | 4                |
| Caolas Bhearnaraigh  | Caolas Bhearnaraigh                | UB 735 1706<br>16 | Razors            | 2                | 0        | 1                |
| Cidhe Eolaigearraidh | Sound Of Barra:<br>Pacific Oysters | UB 427 830<br>13  | Pacific oysters   | 12               | 0        | 0                |
| Garbh Lingeigh       | Garbh Lingeigh                     | UB 713 1622<br>13 | Pacific oysters   | 1                | 0        | 0                |
| North Ford           | Oitir Mhor                         | UB 493 852<br>04  | Common cockles    | 12               | 1        | 0                |
| South Ford           | South Ford                         | UB 259 162<br>04  | Common cockles    | 12               | 4        | 0                |

| Traigh Cille Bharra<br>Cockles | Traigh Cille Bharra<br>Cockles | UB 392 790<br>04 | Common cockles | 13 | 0 | 1 |
|--------------------------------|--------------------------------|------------------|----------------|----|---|---|
| Traigh Mhor                    | Traigh Mhor                    | UB 282 165<br>04 | Common cockles | 16 | 0 | 4 |

# 3.2.4. Dumfries & Galloway

Table 8. E. coli samples received from Dumfries & Galloway Council area

| Production Area               | Site Name                   | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-------------------------------|-----------------------------|-------------------|-------------------|------------------|----------|------------------|
| Kirkcudbright Bay<br>Razors   | Kirkcudbright Bay<br>Razors | DG 809 2132<br>16 | Razors            | 10               | 1        | 0                |
| Loch Ryan                     | Leffnoll Point              | DG 191 174<br>12  | Native oysters    | 10               | 0        | 0                |
| Wigtown Bay: Islands of Fleet | Wigtown Bay                 | DG 305 182<br>16  | Razors            | 10               | 0        | 0                |

#### 3.2.5. East Lothian

Table 9. E. coli samples received from East Lothian Council area

| Production Area      | Site Name               | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|----------------------|-------------------------|-------------------|-------------------|------------------|----------|------------------|
| Gullane Point North  | Gullane North           | EL 601 1087<br>16 | Razors            | 10               | 1        | 0                |
| Gullane Point South  | Gullane South           | EL 703 1525<br>16 | Razors            | 10               | 0        | 0                |
| North Berwick Razors | North Berwick<br>Razors | EL 736 1707<br>16 | Razors            | 11               | 1        | 0                |

### 3.2.6. Fife

Table 10. E. coli samples received from Fife Council area

| Production Area             | Site Name   | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-----------------------------|-------------|-------------------|-------------------|------------------|----------|------------------|
| Elie Razors                 | Elie Razors | FF 868 2365<br>16 | Razors            | 11               | 1        | 0                |
| Fife Ness Surf Clams        | Kingsbarns  | FF 771 1974<br>19 | Surf<br>Clams     | 11               | 0        | 0                |
| Firth of Forth: North       | Anstruther  | FF 068 184<br>19  | Surf<br>Clams     | 11               | 0        | 0                |
| Forth Estuary Surf<br>Clams | Shell Bay   | FF 772 1975<br>19 | Surf<br>Clams     | 11               | 0        | 0                |
| Forth Estuary: Largo<br>Bay | Largo Bay   | FF 072 188<br>16  | Razors            | 11               | 1        | 0                |

# 3.2.7. Highland - Lochaber

Table 11. E. coli samples received from Highland Council: Lochaber area

| Production Area                  | Site Name                        | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|----------------------------------|----------------------------------|-------------------|-------------------|------------------|----------|------------------|
| Arisaig                          | Sgeirean Buidhe                  | HL 004 202<br>13  | Pacific oysters   | 13               | 1        | 1                |
| Camas a Chuilinn:<br>Loch Linnhe | Camas a Chuilinn:<br>Loch Linnhe | HL 875 2386<br>08 | Common mussels    | 17               | 0        | 2                |
| Kildonan Oysters                 | Kildonan Bay                     | HL 796 2082<br>13 | Pacific oysters   | 12               | 0        | 0                |
| Loch Ailort                      | Eilean Dubh                      | HL 114 937<br>08  | Common mussels    | 12               | 0        | 1                |
| Loch Ailort 1                    | Loch Ailort 1                    | HL 114 214<br>08  | Common mussels    | 12               | 0        | 1                |
| Loch Ailort 3                    | Camus Driseach                   | HL 114 207<br>13  | Pacific oysters   | 13               | 1        | 1                |
| Loch Beag                        | Ardnambuth                       | HL 118 215<br>08  | Common mussels    | 12               | 1        | 1                |
| Loch Eil                         | Duisky                           | HL 134 216<br>08  | Common mussels    | 13               | 1        | 1                |
| Loch Eil: Fassfern               | Fassfern                         | HL 136 219<br>08  | Common mussels    | 14               | 0        | 2                |

| Loch Leven: Lower | Lower         | HL 170 222<br>08  | Common<br>mussels | 12 | 0 | 0 |
|-------------------|---------------|-------------------|-------------------|----|---|---|
| Loch Leven: Upper | Upper         | HL 171 223<br>08  | Common mussels    | 12 | 0 | 0 |
| Loch Moidart      | South Channel | HL 179 227<br>13  | Pacific oysters   | 12 | 0 | 0 |
| Loch Sunart       | Liddisdale    | HL 206 1237<br>08 | Common mussels    | 12 | 0 | 1 |

# 3.2.8. Highland- Ross and Cromarty

Table 12. E. coli samples received from Highland Council: Ross and Cromarty area

| Production Area     | Site Name         | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|---------------------|-------------------|-------------------|-------------------|------------------|----------|------------------|
| Inner Loch Torridon | Dubh Aird         | RC 090 1616<br>08 | Common mussels    | 13               | 0        | 1                |
| Little Loch Broom   | Little Loch Broom | RC 805 2122<br>13 | Pacific oysters   | 14               | 0        | 3                |
| Loch Kanaird        | Ardmair           | RC 625 1233<br>13 | Pacific oysters   | 13               | 3        | 1                |

# 3.2.9. Highland - Skye and Lochalsh

Table 13. E. coli samples received from Highland Council: Skye and Lochalsh area

| Production Area               | Site Name                   | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-------------------------------|-----------------------------|-------------------|-------------------|------------------|----------|------------------|
| Kyles of Scalpay              | Kyles of Scalpay<br>Cockles | SL 864 2348<br>04 | Common cocles     | 12               | 2        | 0                |
| Loch Eishort                  | Drumfearn                   | SL 137 281<br>08  | Common mussels    | 13               | 0        | 1                |
| Loch Harport Inner<br>Cockles | Carbost                     | SL 159 286<br>04  | Common cockles    | 13               | 0        | 1                |
| Loch Harport: Inner           | Carbost                     | SL 159 286<br>13  | Pacific oysters   | 13               | 0        | 1                |
| Loch Portree Cockles          | Loch Portree<br>Cockles     | SL 880 2405<br>04 | Cockles           | 14               | 2        | 0                |
| Sound of Sleat                | Gleneig Bay                 | SL 833 2242<br>16 | Razors            | 3                | 0        | 1                |

# 3.2.10. Highland - Sutherland

Table 14. E. coli samples received from Highland Council: Sutherland area

| Production Area | Site Name                       | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-----------------|---------------------------------|-------------------|-------------------|------------------|----------|------------------|
| Kyle of Durness | Keoldale                        | HS 773<br>1984 13 | Pacific oysters   | 13               | 0        | 1                |
| Kyle of Tongue  | Kyle of Tongue                  | HS 103 303<br>13  | Pacific oysters   | 13               | 0        | 1                |
| Loch Glencoul   | Kylesku                         | HS 157 310<br>08  | Common mussels    | 12               | 1        | 0                |
| Loch Inchard    | Loch Inchard - Site 1 - D. Ross | HS 162 311<br>08  | Common<br>mussels | 12               | 1        | 0                |
| Loch Laxford    | Weavers Bay                     | HS 167 320<br>08  | Common mussels    | 12               | 2        | 0                |

# 3.2.11. North Ayrshire

Table 15. E. coli samples received from North Ayrshire Council area

| Production Area            | Site Name                  | Site              |                 | Samples received | Outwiths | Rejected samples |
|----------------------------|----------------------------|-------------------|-----------------|------------------|----------|------------------|
| Fairlie                    | Southannan Sands           | NA 065 332<br>13  | Pacific oysters | 12               | 0        | 0                |
| Stevenston Sands<br>Razors | Stevenston Sands<br>Razors | NA 825 2169<br>16 | Razors          | 11               | 2        | 0                |

# 3.2.12. Orkney Islands

Table 16. E. coli samples received from Orkney Islands Council area

| Production Area   | Site Name | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|-------------------|-----------|-------------------|-------------------|------------------|----------|------------------|
| Bay of Skaill     | Westray   | OI 871 2380<br>13 | Pacific oysters   | 21               | 2        | 4                |
| North Bay Oysters | Hoy       | OI 865<br>234913  | Pacific oysters   | 4                | 0        | 0                |

# 3.2.13. Shetland Islands

Table 17. E. coli samples received from the Shetland Islands Council area

| Production Area              | Site Name                    | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|------------------------------|------------------------------|-------------------|-------------------|------------------|----------|------------------|
| Aith Voe Sletta              | Slyde                        | SI 326 733<br>08  | Common mussels    | 10               | 0        | 0                |
| Baltasound Mussels           | Baltasound Harbour           | SI 010 395<br>08  | Common mussels    | 9                | 2        | 0                |
| Baltasound Mussels           | Baltasound Mussels<br>South  | SI 010 2417<br>08 | Common mussels    | 4                | 2        | 1                |
| Basta Voe Cove               | Inner - Site 1 -<br>Thomason | SI 324 399<br>08  | Common mussels    | 10               | 0        | 0                |
| Basta Voe Cove               | Inner-Site 2- Nisbet         | SI 324 400 08     | Common mussels    | 1                | 0        | 0                |
| Basta Voe Outer              | Outer                        | SI 323 403<br>08  | Common mussels    | 11               | 0        | 0                |
| Brindister Voe               | Brindister Voe               | SI 023 406<br>08  | Common mussels    | 11               | 0        | 0                |
| Busta Voe Lee North          | Hevden Ness                  | SI 327 755<br>08  | Common mussels    | 10               | 0        | 0                |
| Busta Voe Lee South          | Linga                        | SI 328 411<br>08  | Common mussels    | 10               | 0        | 0                |
| Catfirth                     | Catfirth                     | SI 032 412<br>08  | Common mussels    | 10               | 0        | 0                |
| Catfirth Mussels 1           | East of Little Holm          | SI 816 2144<br>08 | Common mussels    | 10               | 0        | 0                |
| Catfirth Mussels 2           | East of Brunt<br>Hamarsland  | SI 817 2147<br>08 | Common mussels    | 10               | 1        | 0                |
| Clift Sound Houss            | Clift Sound Houss            | SI 633 1270<br>08 | Common mussels    | 10               | 0        | 0                |
| Clift Sound: Booth           | Booth                        | SI 036 413<br>08  | Common mussels    | 11               | 0        | 0                |
| Clift Sound: Stream<br>Sound | East Hogaland                | SI 035 414<br>08  | Common mussels    | 10               | 0        | 0                |
| Clift Sound: Whal<br>Wick    | Wester Quarff                | SI 038 1522<br>08 | Common mussels    | 11               | 0        | 0                |
| Colla Firth                  | Colla Firth                  | SI 040 417<br>08  | Common mussels    | 10               | 0        | 0                |
| Dales Voe - Fora Ness        | West Taing                   | SI 502 869<br>08  | Common mussels    | 12               | 0        | 0                |

| Dales Voe: Scarvar           | Scarvar Ayre                 | SI 050 420        | Common          | 11 | 0 | 0 |
|------------------------------|------------------------------|-------------------|-----------------|----|---|---|
| Ayre                         |                              | 08                | mussels         |    |   |   |
| Dales Voe: Scarvar<br>Ayre   | South Side                   | SI 050 868<br>08  | Common mussels  | 1  | 0 | 0 |
| Gon Firth                    | Cole Deep                    | SI 076 1338<br>08 | Common mussels  | 10 | 0 | 0 |
| Gruting Voe:<br>Braewick Voe | Braewick Voe                 | SI 080 424<br>08  | Common mussels  | 11 | 0 | 0 |
| Gruting Voe:<br>Browland Voe | Browland Voe                 | SI 081 425<br>08  | Common mussels  | 11 | 0 | 0 |
| Gruting Voe: Quilse          | Quilse                       | SI 083 427<br>08  | Common mussels  | 11 | 0 | 0 |
| Gruting Voe: Seli Voe        | Seli Voe                     | SI 084 428<br>08  | Common mussels  | 12 | 0 | 0 |
| Hamar Voe                    | Hamar Voe                    | SI 655 1404<br>08 | Common mussels  | 10 | 0 | 0 |
| Hamnavoe                     | Copister                     | SI 348 736<br>08  | Common mussels  | 10 | 0 | 0 |
| Lang Sound                   | Lang Sound                   | SI 107 429<br>08  | Common mussels  | 11 | 0 | 0 |
| Lee of Vollister             | Whale Firth                  | SI 760 1920<br>08 | Common mussels  | 12 | 0 | 0 |
| Mid Noost Pacific<br>Oysters | Mid Noost Pacific<br>Oysters | SI 882 2408<br>13 | Pacific oysters | 6  | 0 | 1 |
| Mid Yell Voe                 | Seafield                     | SI 216 432<br>08  | Common mussels  | 11 | 0 | 0 |
| Mid Yell Voe East            | Bunya Sands                  | SI 797 2083<br>08 | Common mussels  | 11 | 0 | 0 |
| Muckle Roe                   | Pobies Geo                   | SI 221 433<br>08  | Common mussels  | 10 | 0 | 0 |
| North Uyea                   | North                        | SI 230 453<br>08  | Common mussels  | 12 | 2 | 0 |
| Olna Firth Inner             | Inner                        | SI 232 435<br>08  | Common mussels  | 10 | 0 | 0 |
| Olna Firth Outer             | Foula Wick                   | SI 232 434<br>08  | Common mussels  | 10 | 0 | 0 |
| Papa Little Voe              | Millburn                     | SI 235 1350<br>08 | Common mussels  | 10 | 0 | 0 |
| Point of Hamna Ayre          | Point of Hamna Ayre          | SI 374 763<br>08  | Common mussels  | 10 | 0 | 0 |

| Sandsound Voe                                 | Sandsound Voe                | SI 242 443<br>08  | Common mussels    | 10 | 0 | 0 |
|-----------------------------------------------|------------------------------|-------------------|-------------------|----|---|---|
| South of Houss Holm                           | South of Houss Holm          | SI 261 444<br>08  | Common mussels    | 12 | 2 | 0 |
| South Voe Mussels                             | South Voe Mussels            | SI 421 825<br>08  | Common mussels    | 12 | 2 | 0 |
| Stream Sound: Ux<br>Ness                      | Easterdale                   | SI 373 1096<br>08 | Common mussels    | 11 | 0 | 0 |
| Stromness Voe                                 | Burra Holm                   | SI 273 467<br>08  | Common mussels    | 10 | 0 | 0 |
| Swining Voe                                   | North West of Cul<br>Houb    | SI 820 2156<br>08 | Common mussels    | 10 | 0 | 0 |
| The Rona                                      | Aith Ness                    | SI 517 944<br>08  | Common mussels    | 10 | 0 | 0 |
| Uyea Sound                                    | Cow Head                     | SI 441 845<br>08  | Common mussels    | 12 | 1 | 0 |
| Vaila Sound - East<br>Ward                    | Brandy Ayre                  | SI 858 2312<br>08 | Common mussels    | 12 | 0 | 0 |
| Vaila Sound Linga                             | Linga                        | SI 288 457<br>08  | Common mussels    | 12 | 0 | 1 |
| Vaila Sound: East of<br>Linga and Galtaskerry | Whitesness                   | SI 288 1061<br>08 | Common mussels    | 11 | 0 | 0 |
| Vaila Sound:<br>Riskaness                     | Riskaness                    | SI 289 458<br>08  | Common mussels    | 11 | 0 | 0 |
| Vementry North                                | Suthra Voe West              | SI 322 464<br>08  | Common mussels    | 11 | 0 | 0 |
| Vementry South                                | Clousta Voe -<br>Noonsbrough | SI 321 459<br>08  | Common mussels    | 11 | 0 | 0 |
| Wadbister Voe                                 | Wadbister Voe                | SI 294 466<br>08  | Common mussels    | 11 | 0 | 1 |
| Weisdale Voe                                  | North Flotta                 | SI 297 469<br>08  | Common mussels    | 11 | 2 | 0 |
| Weisdale Voe Upper                            | Olligarth                    | SI 378 1521<br>08 | Common mussels    | 11 | 0 | 0 |
| West of Lunna                                 | Cul Ness                     | SI 380 770<br>08  | Common<br>mussels | 10 | 1 | 0 |

### 3.2.14. South Ayrshire

Table 18. E. coli samples received from South Ayrshire Council area

| Production Area      | Site Name                      | Site              | Sample<br>Species | Samples received | Outwiths | Rejected samples |
|----------------------|--------------------------------|-------------------|-------------------|------------------|----------|------------------|
| Ayr Bay              | Ayr Bay Razors                 | SA 841 2263<br>16 | Razors            | 11               | 0        | 0                |
| Ayrshire Coast South | Ayrshire Coast<br>South Razors | SA 867 2363<br>16 | Razors            | 1                | 0        | 0                |
| Croy Bay             | Culzean Bay                    | SA 681 1482<br>16 | Razors            | 5                | 0        | 0                |
| Croy Bay South       | Girvan Mains                   | SA 872 2381<br>16 | Razors            | 4                | 0        | 0                |
| Girvan South Razors  | Girvan South<br>Razors         | SA 778 1997<br>16 | Razors            | 2                | 0        | 0                |
| Heads of Ayre        | Heads of Ayre<br>Razors        | SA 866 2362<br>16 | Razors            | 11               | 0        | 1                |
| North Bay            | Barassie                       | SA 337 719 16     | Razors            | 11               | 0        | 0                |
| Prestwick Shore      | Prestwick Shore<br>Razors      | SA 840 2262<br>16 | Razors            | 10               | 0        | 0                |
| Troon South Beach    | Troon South Beach<br>Razors    | SA 843 2267<br>16 | Razors            | 11               | 1        | 0                |

# 3.3. Outwith results in 2021

The number of outwith results (i.e. those which exceeded the upper *E. coli* MPN/100g for the extant classification status) are reported for all classified production areas by local authority in Table 19.

Table 19. Outwith results reported in 2021

| Local Authority                           | No. valid<br>results<br>reported | No.<br>Ooutwith<br>results | % outwith |
|-------------------------------------------|----------------------------------|----------------------------|-----------|
| Argyll and Bute Council                   | 516                              | 49                         | 9.5%      |
| Comhairle nan Eilean Siar: Lewis & Harris | 201                              | 11                         | 5.5%      |
| Comhairle nan Eilean Siar: Uist & Barra   | 75                               | 6                          | 8%        |
| Dumfries and Galloway Council             | 30                               | 1                          | 3.3%      |
| East Lothian                              | 31                               | 2                          | 6.5%      |

| Fife Council                      | 55   | 2   | 3.6% |
|-----------------------------------|------|-----|------|
| Highland Council: Lochaber        | 155  | 3   | 1.9% |
| Highland Council: Ross & Cromarty | 35   | 3   | 8.6% |
| Highland Council: Skye & Lochalsh | 64   | 4   | 6.3% |
| Highland Council: Sutherland      | 60   | 4   | 6.7% |
| North Ayrshire Council            | 23   | 2   | 8.7% |
| Orkney Islands Council            | 21   | 2   | 9.5% |
| Shetland Islands Council          | 564  | 15  | 2.7% |
| South Ayrshire Council            | 65   | 1   | 1.5% |
| Total                             | 1895 | 105 | 5.5% |

# 4. Section 3: Chemical contaminants summary

This section provides a summary of the chemical contaminants monitoring undertaken in Scottish shellfish under the FSS programme between January and March 2021. A full copy of the report produced by Fera and published in June 2021 is available on FSS' website.

Thirty-one samples of shellfish, including species of common mussels (8 samples), Pacific oysters (5), common cockles (5), surf clams (2), native oysters (1), pullet carpet shells (1) and razor clams (9). The sampling schedule was timed to coincide with the period before annual spawning. This point in the annual cycle contaminant levels would likely be at their highest for optimum detection.

This study on chemical contaminants in shellfish from Scottish classified shellfish production areas, fulfils part of the requirements of EU member states (EU Regulations (EC) 1881/2006 and (EC) 854/2004) to adopt appropriate monitoring measures and carry out compliance checks on shellfish produced for human consumption. In comparison to earlier years, the scope of this study was widened to include production areas that had not been tested before. Marine shellfish bio-accumulate environmental contaminants because of their inability to metabolise these during feeding. The study determines concentrations of regulated environmental contaminants in the flesh of edible species with a view to determine current levels of occurrence and to allow estimation of consumer exposure.

Thirteen samples were analysed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, dioxins), polychlorinated biphenyls (PCBs). Twenty samples were tested for polycyclic aromatic hydrocarbons (PAHs) and 26 samples for heavy metals/trace elements. The methodologies used for the analyses were UKAS accredited to ISO 17025 standard and followed EU commission regulations for data quality criteria.

All measured analytes were below their maximum regulatory levels in the test samples. Contaminant profiles from the 2021 study are similar to the previous year's data.





#### **World Class Science for the Marine and Freshwater Environment**

We are the government's marine and freshwater science experts. We help keep our seas, oceans and rivers healthy and productive and our seafood safe and sustainable by providing data and advice to the UK Government and our overseas partners. We are passionate about what we do because our work helps tackle the serious global problems of climate change, marine litter, over-fishing and pollution in support of the UK's commitments to a better future (for example the UN Sustainable Development Goals and Defra's 25 year Environment Plan).

We work in partnership with our colleagues in Defra and across UK government, and with international governments, business, maritime and fishing industry, non-governmental organisations, research institutes, universities, civil society and schools to collate and share knowledge. Together we can understand and value our seas to secure a sustainable blue future for us all and help create a greater place for living.



© Crown copyright 2022

Pakefield Road, Lowestoft, Suffolk, NR33 0HT
The Nothe, Barrack Road, Weymouth DT4 8UB
www.cefas.co.uk | +44 (0) 1502 562244







