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EXECUTIVE SUMMARY 

 

 ENVIRON International has created and updated a database of information 

pertaining to domoic acid (DA) concentrations in king scallops in Scottish offshore 

waters.  In addition to geospatial, bathymetric, and some phytoplankton data, the database 

contains DA concentration measurements taken between July, 1998 and March, 2004.  

 

 That database has been used to investigate the time-course of DA concentrations 

in boxes that have been “closed” due to concentrations exceeding a risk-based threshold 

of 20 µg DA per g of tissue.  Both gonad and whole tissues were examined; only samples 

collected up to the minimum of 335 days after closure or the date of reopening were 

included.  The probabilistic analysis that is reported here used the statistical modeling 

approach of logistic regression to predict, based on the observations in the database, the 

likelihood that samples taken from closed boxes at various times after closure will have 

DA concentrations less than 20 µg/g (referred to as a “low concentration”).   

 

 One of the major efforts of the analysis was to determine what factors might 

affect the time-course of interest.  It was determined that the following factors played an 

important and significant role, in the sense of modifying the probability of obtaining a 

low-concentration sample from a closed box: 

 

 1.  the area (as taken from the FSAS designation, being E, M, NM, etc.) in which  

  the closed box is located; 

 2.  the month in which closure occurred; and  

 3.  the DA concentration causing closure. 

 

These factors were determined to modify the probability of obtaining a low-concentration 

sample at any time after closure.  The magnitude of their effects, and the specific effect 

on the time-course probability predictions was determined by finding the best-fitting 

logistic regression models that included some function of time after closure.  Models that 

provided a satisfactory fit to the data were found; the predictions (in both graphical and 

tabular form) of those best fitting models have been made available in an accompanying 

Excel spreadsheet named LOGISTIC_PREDICTIONS.xls. 

 

 Implementation of the modeling results can be based on the 

LOGISTIC_PREDICTIONS.xls spreadsheet.  If one wants to base the timing of 

resampling of a closed box on the likelihood of reopening it, then the predicted 

probabilities in that spreadsheet can be used.  To successfully reopen a box, one needs 4 

consecutive samples (2 per day on 2 separate days at least seven days apart) all with low 

DA concentration.  If, for example, one wanted the probability of successfully sampling 

for reopening to be at least 50% (P = 0.5), then that means that there would need to be a 

high probability (in this example, about 0.84 = (0.5)
¼
) that individual samples will have 

low concentrations.  The spreadsheet tabular read-outs of the individual-sample 

probabilities can be used to approximate when that will be the case.   
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 The time after closure when such a high probability will occur depends on the 

factors of area, month of closure, and level causing closure, as indicated above.  In 

general, however, it appears that at short times after closure, e.g., less than 60 days and in 

some instances well beyond 60 days after closure, the probability of getting low-

concentration samples may not be sufficiently high to offer much likelihood of successful 

reopening.  Individual instances (based on area, month of closure, and level causing 

closure) should be evaluated on a case-by-case basis using the spreadsheet predictive 

tools, but when the likelihood of successful reopening is estimated to be relatively low, 

then allocation of resources to other sampling efforts (e.g., monitoring of open boxes that 

would still be yielding scallops for consumption) may be more cost-effective and health-

protective. 

 

 The logistic regression analysis was successful in identifying models that 

appeared to be consistent with the data included in the database.  There are uncertainties 

associated with those models, as there are with any modeling effort.  We have identified 

several key follow-on tasks that would help characterize or reduce those uncertainties, 

such as refinement of the definition of variables in the models, consideration of additional 

covariables, calculation of bounds on predicted probabilities, and elaboration of the 

modeling approach.  Of greatest importance, however, is the continued augmentation of 

the database used for this analysis.  Additional data are already available (from April to 

October 2004); those data offer the rare opportunity to test the model predictions against 

data that were not used to fit the models.  Such a model validation effort would identify if 

and how the models need to be improved.  In general, an on-going effort to maintain the 

database and integrate the new data with the old (ideally, in terms of using those data to 

update the model predictions) has been identified as a key effort for improving the ability 

of FSAS to allocate sampling resources. 
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INTRODUCTION 

 

 In a previous work assignment, ENVIRON International created a database of 

information pertaining to the measurement of domoic acid (DA) in king scallops in 

Scottish offshore waters.  The database contained information on the areas (designated by 

one- or two-letter identifiers, e.g., E, M, NM, IS, etc.) where samples were collected, the 

specific “boxes” within those areas in which data were collected, date of collection, and 

DA concentrations.  Certain bathymetric data were included for most boxes (minimum 

depth, maximum depth, and average depth).   

 

 That database has been expanded as the first task in this work assignment.  Data 

collected from October of 2003 to March of 2004 were added.  In addition, sample size 

information (number of scallops pooled to create a sample that was then analyzed for DA 

concentration) was added for some of the more recent observations.  However, the major 

effort under this work order has been the analysis of the data, with respect to the timing 

of sampling in closed boxes and the corresponding probability that a box would be re-

opened. 

 

 In this analysis, the main issue under consideration was to determine if it is 

possible to suggest optimal times after closure of a box at which resampling may be done.  

It was desired to estimate resampling dates that would improve “efficiency” by reducing 

the number of times such resampling returned the verdict that the box should remain 

closed.  From the standpoint of Food Standards Agency Scotland (FSAS), resampling a 

closed box too soon, before natural forces or typical patterns have had a chance to reduce 

DA levels in scallop tissues to levels considered safe, means extra effort and money spent 

to no avail.  That is, such sampling does not change the status of a box from closed to 

open, so in some sense the resampling might just as well not have been undertaken.  On 

the other hand, to maximize the utilization of the scallop fishery, closure of boxes should 

not be extended beyond the time period necessary to achieve the reduction in DA 

concentrations necessary to return scallops to a safe condition.  Hence it is important to 

attempt to optimize expenditure of resources by conducting resampling when there is a 

good chance of affecting some change in box status. 

 

 To date, decisions on the closure of boxes have been based on DA concentrations 

in gonad tissues.  Hence, the analyses reported below have examined the patterns in 

gonad DA concentrations.  But FSAS has expressed the desire to investigate the use of 

whole-tissue samples for closure determinations.  While there are fewer measurements of 

whole tissues present in the database, we have applied the same analysis approaches to 

deal with the whole tissue data as we have applied to the gonad samples.  In both cases, a 

DA concentration of 20 µg/g has been taken as the “threshold” for determining closure.
1
  

In the following, mention of “low concentrations” or “low-concentration samples” refers 

                                                 
1
 Technically, the 20 µg/g threshold for whole tissues is now associated with the issuing of a shucking 

advisory.  A DA concentration from a box in excess of 250 µg/g in whole tissues would result in closure of 

the box.  But, for the purposes of this analysis, the 20 µg/g threshold is what defines “closure” for either 

gonads or whole tissues. 



 

 5 

to that threshold, for both tissue types; a low concentration is one that is less than 20 

µg/g.   

  

 The issue of resampling as a function of time is complicated by the fact that there 

appears to be a great deal of variability with respect to the timing of DA concentration 

change.  On top of that, there is variability across samples on any given date; i.e., the 

concentrations in samples collected in the same box on the same day will vary, and it is 

possible that one sample will indicate DA levels in the safe range while another sample 

will indicate that DA concentrations are too high.  It is not clear even that the important 

sources of or contributors to variability over time have been identified.  From the 

perspective of this analysis, that has entailed that a substantial part of the effort has been 

to find those parameters that best describe or contribute to observed patterns of DA 

concentration and that the variability not accounted for by such parameters is treated as 

random variation.  The manner in which the parameter investigation and random 

variation were treated is described in the Methods section. 

 

 The remainder of this document includes Methods, Results, Discussion, and 

Conclusion sections.  The Methods section defines the analysis methodology, the 

assumptions made for that methodology to apply, and the specific approaches applied in 

the case of DA in scallops.  The Results section provides the major findings with respect 

to resampling of closed boxes.  These findings are presented in terms of the probability of 

a sample yielding a concentration estimate below the cut-off point for closure (20 µg/g).  

The Discussion section suggests the ways in which the probability estimates presented in 

the Results section can be used to aid in the determination of the time for resampling 

closed boxes.  Graphical aids are provided as are supplemental spreadsheets that can be 

used by FSAS to calculate the desired probabilities in specific instances.  

Recommendations for follow-on work are also provided.  Finally, the Conclusion section 

summarizes all of the findings and offers observations about the timing of resampling in 

closed boxes.  

 

 

METHODS 

 

 Two sets of analyses were completed, distinguished by tissue type.  One set of 

analyses was based on gonad tissue, with the 20 µg/g cutoff.  The other, independent set 

of analyses looked at DA concentrations in whole tissue.  While box closure has not 

heretofore been based on whole tissue DA concentrations, FSAS has expressed an 

interest in determining the effect of doing so.  For the second set of analyses, only whole 

tissue concentrations were examined, with gonad tissue concentrations ignored.  Box 

“closure” was determined by DA concentrations in whole tissue, with 20 µg/g also 

serving as the cutoff for that determination here as well. 

 

 The focus of this analysis was on sampling in closed boxes.  Therefore, the data 

points that were used in this analysis were those that came from closed boxes.  For our 

purposes, we desired to know the date of closure, and we needed to know when a box 

was reopened.  Thus, for these analyses, the following definitions applied: 



 

 6 

 

 Date of closure: the day on which a sample (of the appropriate tissue type) from a 

particular box was determined to have a DA concentration greater than or equal to 20 

µg/g, if the preceding two sample dates that were at least seven days apart had all 

concentrations for those dates less than 20 µg/g. 

 Date of reopening: the day on which two consecutive dates of sampling (at least 

seven days apart) from a particular box returned all concentrations for those dates less 

than 20 µg/g. 

 

Observations that were between the date of closure and the date of reopening, inclusive, 

for a given box were included in the analyses.  The following points are consequences of 

those definitions: 

 1.  A box that had a DA concentration greater than or equal to 20 µg/g as one of 

the first two sampling dates in the database did not contribute observations to the analysis 

until after that box had two consecutive dates of sampling (at least seven days apart) that 

had all concentrations below 20 µg/g.  In such instances, one could not determine when 

closure occurred (it was sometime before data for that box were available) for those 

observations at the “beginning” of the record for that box, so those observations were not 

included in the analysis. 

 2.  Any concentration measurement was included in at most one closure for one 

box.  That is, each observation could be associated with at most one closure period, so 

there was no overlap in counting, and the probabilities estimated by the methods 

described below could be determined without fear of “double counting.” 

 3.  A variable defined as the days since closure, referred to as “DAYS” below, 

could be defined.  The minimum value for that variable was zero; concentrations 

measured on the same day as the date of closure, but not including the concentration that 

determined closure, were included in the analysis.  Operationally, on the date of closure, 

the maximum concentration (by definition, greater than or equal to 20 µg/g) was ignored, 

but all other concentrations for that day were considered for the analysis. 

 4.  A maximum value for DAYS did not, in theory, exist.  It was possible that a 

box would never satisfy the criteria for the definition of the date of reopening (which 

otherwise would define the maximum value of DAYS for a given closure incident in a 

given box) so that the date of reopening would never occur.  In the database, we observed 

concentrations that would have been included in our analysis that had DAYS up to and 

including 1321 (i.e., more than 3.5 years for a box to fail to be reopened by the above 

definition) for gonad concentrations.  For whole tissues, similar large values of DAYS 

included values equivalent to more than 4.5 years. 

 5.  A box could contribute more than one set of observations if that box was 

closed, then reopened, and then closed again.   

 

 In practice, the analyses included only those observations for which DAYS was 

less than or equal to 335.  This decision was made for the following reasons.  First, it was 

recognized during preliminary examination of some of the data that there was the strong 

potential for yearly cycles in DA concentration.  Thus, if a box had remained closed for 

nearly a year, then it was likely that another cycle of changes in DA concentration similar 

to the one just completed (during the first year of closure) would begin anew.  Such 
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cyclic patterns might very easily mask any patterns over shorter time periods.  That is, 

any model that modeled the probability of getting concentrations below 20 µg/g as a 

function of days since closure might not fit the patterns over the shorter term as it tried to 

fit all of the data over the longer term.  Second, it seems likely that FSAS would be more 

interested in the best estimates for the probability of getting a sample below 20 µg/g in 

the time period before one year after closure, because there would be “pressure” to 

reopen closed boxes as soon as safely possible.  The specific value of 335 days was 

selected so that no observation would enter the analysis that was in the same month (but 

one year later) as the closure date for the box from which that observation was taken (365 

days in a year minus 30 days per month, roughly).  There were only 16 gonad samples 

and 28 whole tissue samples collected between 330 and 365 days, inclusive, after the date 

of closure, so the impact of changing the cutoff date for inclusion of samples in the 

analysis would be minimal. 

 

 Because the main interest was in whether or not a sample would fall above or 

below 20 µg/g DA, as input to a decision about reopening a box, the dependent variable 

of interest that was the object of all our analyses was defined as follows: 

 

 Y = 1  if the DA concentration was less than 20 µg/g 

  = 0  if the DA concentration was greater than or equal to 20 µg/g. 

 

This definition of the outcome of interest was also prompted by the fact that some of the 

concentration measurements were recorded as being “> 250” which makes treatment of 

concentrations as a continuous variable problematic.  Dichotomization of the 

concentration results was not hampered by the cutoff of some samples at 250 µg/g and it 

still captured the event of interest, i.e., whether a low concentration was or was not 

obtained, and the estimation of the probability of such low concentrations being 

observed. 

 

 Given that definition of Y as the dichotomous variable of interest, we were 

interested in estimating the following probabilities: 

 

  P(Y = 1 | DAYS = d; Z = z), 

 

that is, the probability of getting a sample with a DA concentration below 20 µg/g on day 

d after closure, where Z represents the covariates (variables other than the number of 

days since closure, DAYS) that might help determine the probability of interest, and z 

indicates the value of those other parameters.  Note that Z and z might be vectors (i.e., Z 

might consist of more than one covariate related to the probability of interest). 

 

 From the database of sample values that was compiled and presented to FSAS in 

the first task of this work assignment (and which was extended with more recent data as 
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the first step in the current task), each of the observations
2
 included in the analysis had 

the following variables available (or derived) for it. 

 

Variable Description 

Y The dichotomous outcome variable of interest; 

Y = 0 or Y = 1. 

BOX The box from which the sample was collected. 

DAYS The number of days since the date of closure of 

the box from which the sample was obtained (0 

< DAYS < 335). 

AREA The major areas in which the box was located 

(e.g., M, S, O, NM, etc.). 

COAST Coast from which the sample was obtained; 

COAST = east for areas E, M, O and S; 

COAST = west for all other areas. 

MON The month in which the box from which the 

sample was obtained was closed. 

LEV The concentration of DA that caused closure of 

the box from which the sample was obtained; 

LEV > 20 µg/g. 

MINDEPTH Minimum depth (meters) of the box from 

which the sample was obtained. 

AVGDEPTH Average depth (meters) of the box from which 

the sample was obtained. 

MAXDEPTH Maximum depth (meters) of the box from 

which the sample was obtained. 

 

The parameter LEV was treated as a continuous variable.  The concentration that initiated 

closure of a box was never one recorded as “>250” so it was possible to unambiguously 

assign a concentration level associated with closure of a box.  The values of LEV ranged 

from 20 to 140 µg/g for gonads and 20.7 to 112 µg/g for whole tissue. 

 

 A common approach used for the analysis of dichotomous outcome variables 

(e.g., Y in our case) is logistic regression.  Logistic regression looks very similar to the 

well-know linear regression approach, but it accounts for the fact that the outcome is not 

continuous (Y is either 0 or 1) and that the probability of interest (that Y = 1) must fall 

between 0 and 1.  The logistic regression analyses used here for all of the following is 

given by  

 

  Logit[P(Y = 1 | DAYS = d; Z = z)] = β0 + β1*f(d) + βZ*z 

 

where logit[x] = x/(1-x), the β coefficients are to be estimated, f(d) is some function of d 

(e.g., d
2
), and βZ and z may be vectors.  The right side of that equation looks like the 

familiar linear regression.  But, if we let p denote the probability of interest on the left 

hand side of that equation, solving for p yields 

                                                 
2
 Some observations were lacking the bathymetric measurements that determined the values of the 

parameters MINDEPTH, AVGDEPTH, and MAXDEPTH. 
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  p = exp{β0 + β1*f(d) + βZ*z} / [ 1 + exp{β0 + β1*f(d) + βZ*z}], 

 

which can be seen to fall between 0 and 1, as desired.  The statistical software package 

SAS (PROC Logistic) was used to solve for the β coefficients and to give the diagnostics 

of fit used to pick the best fitting model from among those considered.  As will be seen 

below, those models included ones with different functional forms for f(d) (to determine 

the function of days since closure that best describe the change in probability of a low 

concentration) and they considered different sets of possible covariables which make up 

the vector Z.   

 

 Maximum likelihood methods were used for fitting the models to the data.  

Models were compared to one another via the associated values of the maximized log-

likelihood, L.  When one model is a special case of a second model (e.g., when the 

second model includes all the parameters of the first model plus some others) it is known 

that the maximized likelihood of the second model will be at least as large as that of the 

first model.  Formal comparison of the two models is possible by comparing  

 

  -2(L1 – L2), 

 

where Li is the log-likelihood of model i, to a chi-square distribution with v degrees of 

freedom (where v is the number of extra parameters in the second model, compared to the 

first).  Such statistical comparisons were used as part of the model selection effort. 

 

 

RESULTS 

 

 Gonads 

 

 There were a total of 1787 measurements of DA in gonad tissues of scallops 

collected from closed boxes eligible for the analyses.   As stated above, that number 

includes only those samples collected between 0 and 335 days (inclusive) from the date 

of closure.   

 

 For most of the analyses reported here, only 1779 observations were used for the 

logistic regression modeling of gonad concentrations.  Eight samples from areas E and IS 

were excluded from most considerations.  Those areas were excluded because of the 

relatively few samples collected from closed boxes there.  In area E, box E03 was closed 

once and all samples collected during the closure periods after the day of closure (2 

collected 48 days after closure and 1 collected 163 days after closure) were below 20 

µg/g.  The sample collected on the day of closure (not the one that caused closure) had a 

concentration of 29 µg/g.  Similarly, box IS14 was closed twice, and all four samples 

collected during the closure periods (collected on days 7 and 21 after one closure and on 

days 111 and 119 after the other closure) were below 20 µg/g.  Ignoring these 8 samples 
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out of 1787 would not have a major impact on the results.
3
  In the areas remaining in the 

analyses (H, J, M, NM, O, and SM) there was more than just one closed box that 

contributed observations to the analyses.  Thus, for those areas, it is likely that estimates 

of the probability of a low concentration are more robust than would be the case if only 

one box contributed to the observations.  The numbers of data points in those areas, by 

month of closure, are summarized in the following table: 

 
 Area 

Month of 

Closure 

H J M NM O SM All 

Jan  5 3 15 5 14 42 

Feb 5   8  5 18 

Mar  25   3 11 39 

Apr 30   27  8 65 

May 10 5  22 25 18 80 

Jun  43  31 45 21 140 

Jul  132 22 40 110 172 476 

Aug 34 63 42 112 117 110 478 

Sep 24 45 12 9  33 123 

Oct 40 42 10 31 24 55 202 

Nov  15  16 44 20 95 

Dec 5   13 3  21 

Total 148 375 89 324 376 467 1779 

 

 

 A total of 1132 of the 1779 observations included in the analysis of gonad tissues 

had DA concentration less than 20 µg/g.  The following description summarizes the 

process of determining the best set of covariables for estimating the probability that such 

a low concentration would arise. 

 

 The modeling of interest always included DAYS, because the primary interest of 

the analyses was to examine time-trends in DA concentration following closure.  Thus, 

the base model would include some function of the DAYS variable, but it was not clear a 

priori if the best description of the observations would be attained using DAYS itself or 

some alternative function of DAYS.  The alternatives examined were power functions of 

DAYS, DAYS
x
, where the values of x examined were ½, 1, 2, 3 and 4.  These five 

choices span curve shapes that are steeper for lower values of DAYS (i.e., concave down, 

for DAYS
½
), that are linear (for DAYS

1
), and that have concave upward shapes of 

various degrees of curvature (for DAYS
2
, DAYS

3
, and DAYS

4
).  The likelihoods 

associated with the fits of these basic models are given in the following table: 

 
Model: logit(p) = ββββ0 + ββββ1*DAYS

x
 

x = 

Maximized Log-Likelihood 

                                                 
3
 The formal reason for the exclusion of these observations was that logistic regression analyses are 

adversely impacted by variables that completely (or almost completely) separate the Y=0 observations from 

the Y=1 observations.  Because all but one of the observations in these two areas had Y=1, the SAS PROC 

Logistic routine flagged AREA as a parameter that might lead to such separation.  In order to maintain the 

same set of observations for comparison of all models fit to the data, the observations in boxes E03 and 

IS14 were excluded from all models, even those that did not include AREA as a covariable. 
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½ -1161.23 

1 -1159.1 

2 -1156.48 

3 -1156.14 

4 -1157.04 

 

Recalling that a larger log-likelihood indicates a better fit, it can be seen that the model 

with DAYS
3
 provides the best fit, with the model with DAYS

2
 nearly as good.  Models 

including both those functions of DAYS were examined further.  In addition, even 

though DAYS
1
 was not among the best, we included models with that function of DAYS 

just because it may appear to be a more natural choice.  Note however, that the modeling 

pursued here is not intended to uncover some underlying physical or biological reality so 

that choice of the function of DAYS to include is merely intended to maximize the 

prediction of the probability of getting low concentrations of DA in scallops collected 

from closed boxes.  So, even though we have included DAYS
1
 in the modeling exercise, 

that function of DAYS should not be automatically preferred a priori over any other 

function of DAYS. 

 

 A preliminary investigation of the impact of including the bathymetry variables 

(MINDEPTH, AVGDEPTH, and MAXDEPTH) suggested that MINDEPTH was at least 

as good as the other two variables in terms of matching the observed proportions of low-

concentration samples when combined in a logistic model with DAYS
1
.  So, subsequent 

analyses reported here examined only MINDEPTH and not AVGDEPTH or 

MAXDEPTH, for all three functions of DAYS. 

 

 The procedure for determining what other variables to include in the modeling 

was a forward selection procedure, where, one at a time, other variables were added to 

the model and it was determined if such an addition significantly improved the fit of the 

model to the data (determined by the change in the maximized likelihood).  When several 

possible additional variables significantly improved the fit, the one that was “most 

significant” (had the lowest p-value associated with the difference in the likelihoods) was 

added and then other possible additions were considered subsequently.  Adding of 

variables stopped when no addition had a p-value associated with the change in 

likelihoods less than 0.10. 

 

 The results of the model selection described above for the models starting with 

the three functions of DAYS are summarized below: 

 
 Base Model (Function of DAYS) 

 DAYS
1
 (-1159.1) DAYS

2
 (-1156.48) DAYS

3
 (-1156.14) 

Step Var. Added p-value Var. Added p-value Var. Added p-value 

1 MON 

(-1102.86) 

5.8E-19 

 

MON 

(-1101.64) 

2.1E-18 

 

MON 

(-1103.21) 

1.2E-17 

 

2 AREA 

(-1085.65) 

1.9E-06 

 

AREA 

(-1084.72) 

2.5E-06 

 

AREA 

(-1086.61) 

3.4E-06 

 

3 LEV 

(-1081.77) 

0.0054 

 

LEV 

(-1081.02) 

0.0065 

 

LEV 

(-1083.06) 

0.0077 

 

4 DAYS
1
xLEV 

(-1066.89) 

4.8E-08 

 

DAYS
2
xLEV 

(-1065.53) 

2.6E-08 

 

DAYS
3
xLEV 

(-1066.29) 

7.0E-09 
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5 DAYS
1
xMON 

(-1052.44) 

0.0024 

 

DAYS
2
xAREA 

(-1057.42) 

0.0062 

 

DAYS
3
xAREA 

(-1057.82) 

0.0046 

 

6 --  DAYS
2
xMON 

(-1048.73) 

0.097 

 

--  

Notes:  In parentheses are the log-likelihood values associated with the corresponding models. 

 

 The table above can be understood as follows.  Take the DAYS
1
 base model as an 

example.  With DAYS
1
 in the model, the other four variables considered for these 

analyses (AREA, LEV, MON, MINDEPTH) were examined to see if they improved the 

fit of the base model.  MON was the most significant with respect to improving the fit to 

the data (observe the big change in log-likelihoods from -1159.1 to -1102.86, with an 

associated p-value of 5.8E-19, i.e., 5.8x10
-19

, where a smaller p-value is associated with a 

bigger improvement in the fit of the model), so MON was added to the model.  With 

MON in the MODEL the other variables were examined to see if, with DAYS
1
 and MON 

in the model, they still significantly improved the fit.
4
  The AREA variable did so, and so 

it was added in step 2.  Similarly, the LEV variable improved the fit of the model that 

included DAYS
1
, MON, and AREA, and so was added in step 3.   

 

 At that point, for the DAYS
1
 base model and both of the other base models, all of 

the “main effects” (covariables under consideration, other than MINDEPTH) were 

included in the model, and so interaction terms were considered next.  The interaction 

terms that were considered were all of the two-way interactions of the DAYS function 

and the other main effects included in the model.  Interaction terms are designated by 

something of the form “RxS” (e.g., DAYS
1
xLEV, the interaction of DAYS

1
 and the LEV 

variable).  Because three main effects in addition to the DAYS function were included in 

all the models, there were three possible interaction terms to consider.   

 

 In the case of the DAYS
1
 base model, the first interaction to enter the model was 

DAYS
1
xLEV, followed by DAYS

1
xMON.  The DAYS

1
xAREA interaction did not enter 

the model, because with the main effects and the other interactions in the model, 

DAYS
1
xAREA did not significantly improve the fit. 

 

 Note that the three base models differed in terms of addition of variables with 

respect to the interaction terms that were added.  For DAYS
2
, all interactions of other 

main effects with DAYS
2
 were significant.  For DAYS

3
, the first interaction to enter the 

model was the one with LEV (as for the case of DAYS
1
) but the second one to enter 

involved AREA (unlike the case for DAYS
1
) and that was sufficient (i.e., DAYS

3
xMON 

did not add significantly to the fit once DAYS
3
xAREA was included, unlike the DAYS

2
 

model).  The three base models ended up including different sets of variables and 

interactions.  The impact of those different sets with respect to model fit and to 

predictions of probabilities of low DA concentrations at various times after closure are 

examined below. 

                                                 
4
 The variable MINDEPTH was uniformly the least important variable, for all the models that we 

examined.  It never added significantly to the fit of the base model; p-values ranged from 0.14 to 0.17 

across the base models examined, including those that used the COAST variable instead of AREA (see 

below).  So, MINDEPTH was no longer considered after the first step for all of the base models shown here 

and below. 



 

 13 

 

 But first some mention of the need for interaction terms may be necessary.  

Addition of only the main effects changes the fit of the model to the data by shifting up or 

down the straight lines describing the logits as a function of DAYS (or some function 

thereof).  That is, they merely change the intercept (or, in other words, make the intercept 

a function of the main effects) while keeping the slope constant.  This can be seen from 

the equation for the logits given in the Methods section: 

 

  Logit(p) =  β0 + β1*f(d) + βZ*z 

    = (β0 + βZ*z) + β1*f(d), 

 

after rearrangement of the terms (for d days after closure and covariable values z).  Since 

βZ*z does not involve DAYS when Z (the vector of covariables) includes no interaction 

terms, this shows that the same slope (β1) is assumed no matter what the values of the 

covariables may be (i.e., for all areas, months of closure, and levels that caused closure).   

 

 Conversely, suppose that the Z vector includes interaction terms; take 

DAYSxLEV as an example and assume that it is the only interaction term in the model.  

Then the logit equation can be rewritten 

 

  Logit(p) =  β0 + β1*d + βZ*z 

    = β0 + β1*d + βZ’*z’ + βDL*d*l 

    = (β0 + βZ’*z’) + β1*d + βDL*d*l 

    = (β0 + βZ’*z’) + (β1 + βDL*l)*d, 

 

where l is the value of LEV and Z’ is the vector of covariables other than DAYSxLEV 

(in this example, including no interaction terms) which have values given by the vector 

z’.  This rearrangement shows that the DAYSxLEV interaction introduces a variable-

slope model, a model where the slope for DAYS (β1 + βDL*l) varies and depends on the 

value of LEV. 

 

 Note that at the end of the third step of the model selection process, all of the base 

models had added all the main effects.  Interestingly, the DAYS
1
 base model, which 

started out with the lowest log-likelihood, was at that point fitting the data slightly better 

than the DAYS
3
 model.  But, all of the base models added two or more interaction terms 

(starting with DAYS
x
xLEV in all cases) before the selection process was completed.  For 

all of those models, the probability of obtaining a sample with DA concentration less than 

20 µg/g at any given time after closure depended on the area in which that sample is to be 

collected, the month closure occurred, and the level of DA that caused closure.  

Moreover, because of the interactions, the rate of change of that probability also 

depended on two or more of those factors.  Specific model predictions are discussed next. 

 

 Figures 1-3 display the fits of the base models to the data from all areas, months 

of closure, and levels causing closure.  Recall that the base models do not take into 

account any of these factors, so the model predictions can be presented on a single plot, 

for each function of DAYS.  Note that the observations themselves have been 
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“summarized” in the following sense.  The observations are actually either 0’s or 1’s; 

plotting 1779 points that are either 0 or 1 would produce an uninterpretable jumble of 

points.  Instead, Figures 1-3 display the proportion of times a low-concentration sample 

was obtained, over several ranges of the DAYS variable.  The ranges were selected 

arbitrarily, but they do function to show the overall trends in the proportion of samples 

with low concentrations.  The data underlying those figures are summarized here: 
 

Range of DAYS Number of Samples Proportion of Samples with 

Low Concentration 

0 128 0.57 

1-19 129 0.65 

20-40 250 0.67 

41-80 379 0.55 

81-120 322 0.66 

120-200 382 0.63 

201-335 189 0.78 

 

The number of samples per range is reasonably large for all ranges; the ranges more 

towards the middle have somewhat greater sample size.  Since this is merely for the sake 

of illustration and has no impact on the model selection or fitting, we considered this 

breakdown to be adequate.  The range that is composed of only DAYS=0 was included to 

show that there were many samples collected on the day that a box was closed, and that 

even then more than half of the samples collected had low DA concentrations. 

 

 While the plots and the above table suggest an overall trend of increasing 

proportions of low-concentration samples, it is easy to see that there is considerable 

“scatter,” that the change in proportions of low-concentration samples is not 

monotonically increasing.  Some of that may be due to the fact that those plots lump 

together all areas, months of closure, and levels causing closure, which have been shown 

in the model selection to be important covariables.  On the other hand, the stochastic 

nature of the sampling and measurement of DA (leading to a random component in the 

determination of whether a sample has low concentration or not) means that even after 

adjusting for those covariables, the data will continue to show some degree of scatter. 

 

 The base models do a reasonable job of matching the data.  They all show the 

increasing trend and they do tend to be “close to” the proportions shown.  Of course, the 

models are constrained to be monotonic with DAYS, and so they can not reflect all of the 

nonmonotonicities in the observed proportions, nor would we necessarily want them to.  

The DAYS
1
 base model has a more steady increase in predicted probability of a low-

concentration sample; it matches the DAYS=0 observation very well.  The DAYS
2
 and 

DAYS
3
 base models show a slower rate of increase for shorter times after closure (and so 

they tend to “split the difference” between the observed proportions for those shorter 

times) while they increase more steeply as time progresses.  Those two models provide a 

better fit to the proportions at later times (nearly bisecting the line representing the 

proportion in the last DAYS range, which would represent the ideal relationship between 

the model predictions and the observed proportions plotted in this way).  The DAYS
3
 

base model does also intersect the line representing the proportion in the penultimate 

DAYS range (although it does not come close to bisecting it), and so it is perhaps not 
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surprising that the DAYS
3
 base model gave the greatest likelihood of these three models 

(indicating the best fit). 

 

 Because the model selection discussed above suggested that area, month of 

closure, and level causing closure were significant covariables, it becomes difficult to 

display all of the comparisons of model predictions and observations.  That is the case 

because each area (there were 6 of them in the analysis) and month of closure (all 12 of 

them) would have a different plot (yielding 72 such plots).  Moreover, since LEV is a 

continuous variable, it is not feasible to plot the comparisons of the model predictions to 

the observations broken down by values of LEV (although LEV could be categorized and 

plots, by area and month of closure also, could be developed for the LEV categories). 

 

 Instead, to illustrate the fits of the selected model for each function of DAYS, we 

have selected three combinations of area and month of closure (ones that have a 

reasonable number of sample points) to illustrate the fits for those selected models.  The 

areas (H, O, and SM) were selected to be from differing geographical regions of the 

Scottish coast and the months of closure (April, July, and October) were selected to span 

a good part of the year (recognizing that most of the observations were obtained from 

closures that occurred in the summer months).  The specific combinations examined were 

of observations from area H having an April closure date; from area O having a July 

closure date; and from area SM having an October closure date.  The visual comparisons 

are displayed in Figures 4-12.  In those figures the observed values themselves (the “0” or 

“1” observations that reflect samples having greater than or less than 20 µg/g DA, 

respectively) have been added to the plots.  Proportions calculated from those 

observations (as described above) have been included as well. 

 

 Those figures display the variety of trends and model predictions that can be 

attained.  For area H with closure starting in April, it appears that the likelihood of 

obtaining a sample with low concentration actually decreases as time after closure 

increases.  While the best DAYS
1
 model does reflect that downward trend (Figure 4), the 

other two models predict very slight increases in the probability over time (Figures 5 and 

6).  The trend in the proportion of samples with low concentrations appears to be 

increasing in area O when closure is in July and in area SM when closure is in October 

(Figures 7-9 and 10-12, respectively). All the models appear to describe the increasing 

pattern for area O.  The best DAYS
2
 model, however, predicts decreasing probability of a 

low-concentration sample as time after an October closure increases in area SM; the other 

two models show an increasing trend for that area and month of closure. 

 

 These nine examples are a small set of the matches between observations and 

model predictions that have gone into the model selection and parameter coefficient 

estimation process.  Even here, the impact of the LEV covariable was only approximated 

– for the model predictions it was set equal to the average for the corresponding area and 

month of closure.  Some discrepancy between observed trends and model prediction may 

be due to that simplification; in actuality, each observation and the corresponding model 

prediction would depend also on the specific level causing closure. 
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 So it would be inappropriate to judge among the models on the basis of these 

plots alone.  Indeed, the parameter estimates obtained for the selected models were 

derived by finding the values that maximized the likelihood of obtaining all the 

observations, across areas, months of closure, and levels causing closure.  So, 

discrepancies shown here are the result of parameter estimation that does best overall, but 

may deviate from the observations in particular instances, as we know they must because 

of the randomness of the observations and the fact that there are undoubtedly other 

factors (potential covariables) besides those at our disposal that affect the likelihood of 

obtaining a sample with low DA concentration. 

 

 Three statistical measures of fit are presented here to compare the three models 

and help determine if any of them do an adequate job of fitting the data overall.  The first 

two, the R
2
 value and the concordance rate, are not associated with a formal test of fit.  

The third, the Hosmer-Lemeshow goodness-of-fit statistic, does actually compare the 

observed and expected number of low-concentration samples, and uses a chi-squared-

based test to see if the expected number is acceptably close to the observed number.  The 

values for those measures for the three selected models are shown in the following table: 

 
 Statistical Measure 

 R
2
 Concordance (%) H-L Statistic (p-value) 

DAYS
1
 Selected Model 0.120 69.5 11.11 (0.20) 

DAYS
2
 Selected Model 0.124 69.6 10.52 (0.23) 

DAYS
3
 Selected Model 0.115 69.1 5.46 (0.71) 

 

The R
2
 value relates to the amount of variation in the observations that is explained by 

the model.  All three selected models can account for approximately 12% of the total 

variation.  That is a relatively small amount, but as discussed above, it is not surprising 

given the amount of scatter displayed in the example graphics (Figures 1-12) and the fact 

that there may be some important explanatory variables that we have not considered (e.g., 

temperature information is one possibility that one might want to consider). 

 

 Concordance measures the degree to which observations that have different 

predicted probabilities of a low-concentration sample are “properly sorted.”  That is, it 

looks at all pairs of observations with different response values (0 and 1 in this analysis) 

and determines for each pair if the observation that has the value 1 has a greater model-

predicted probability of having a value of 1 than the observation with the value 0.  If that 

is the case, that pair of observations is concordant; otherwise it is discordant (or tied if the 

members of the pair have the same model-predicted probability).  All three models have 

similar concordance rates; between 69% and 70% of the pairs are concordant. 

 

 The Hosmer-Lemeshow goodness-of-fit statistic extends the common and familiar 

chi-squared tests of fit to models that have continuous covariables (as these models do 

with the function of DAYS and with LEV).  It is based on a partition of the observations 

into approximately 10 groups based on their predicted probability of a low-concentration 

sample (roughly, the observations with the lowest ten percent of the predicted 

probabilities go in the first group, and on up to the observations with the highest ten 

percent of the probabilities).  Then the observed numbers of low-concentration samples 
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can be compared to the model predicted expected number of such samples, and a chi-

squared test (with 8 degrees of freedom) can be applied.  For our models, the match 

between the DAYS
3
 selected model and the observations is strikingly better than that for 

the other two models; a smaller p-value is indicative of a poorer fit.  The excellent match 

between the observed and predicted numbers for the DAYS
3
 model is summarized in the 

following table: 

 
 Low-Concentration Samples Higher-Concentration Samples 

 Observed Expected Observed Expected 

Group 1 64 68.17 114 109.83 

Group 2 90 83.78 89 95.22 

Group 3 95 92.42 84 86.58 

Group 4 104 100.28 74 77.72 

Group 5 103 109.13 75 68.87 

Group 6 111 115.43 68 63.57 

Group 7 128 122.62 52 57.38 

Group 8 126 132.58 52 45.42 

Group 9 150 147.67 28 30.33 

Group 10 161 159.90 11 12.10 

 

 Based on the similar proportion of variability explained by the three models, on 

the similarity of the concordance measures, and on the clearly better fit by the DAYS
3 

selected model, that model would appear to be the best choice for use in planning dates 

for gonad tissue collection in closed boxes. 

 

 As noted at the beginning of this section, 1779 observations were used in the 

above model estimation procedures, because observations in two areas (E and IS) almost 

completely separated the Y=0 observations from the Y=1 observations (all but one 

observation in those areas had a low DA concentration).  In addition, the above models 

use area as a covariable, so application of the model results to areas other than those 

included in the database would be problematic.  As an alternative to the modeling above, 

one that allows use of the 8 observations from areas E and IS and that avoids the 

problematic extrapolation to other areas, we completed logistic regression modeling 

using COAST in lieu of AREA as a covariable.   

 

 Based on the favorable results obtained when DAYS
3
 was the chosen function of 

DAYS, the model selection procedure for the “COAST” model used DAYS
3
 as well.  

When the selection procedure described above was applied, the main effects of MONTH, 

then COAST, then LEV entered the model.  The only interaction that significantly 

improved the fit was the DAYS
3
 x LEV interaction.  The final model had an R

2
 of 0.097, 

concordance of 67.6%, and p-value for the Hosmer-Lemeshow goodness-of-fit test of 

0.41.  While these statistics indicate an adequate fit, they are slightly worse than the 

corresponding estimates for the selected DAYS
3
 model that uses area.  As one would 

expect, lumping areas into coasts causes some loss of resolution in the model predictions, 

but the “COAST” model is still useable. 

 

 For comparison purposes, Figure 13 displays the model predicted time-course of 

the probability of a low concentration for area SM (a west-coast area) with October being 
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the month of closure.  The predictions use the average level causing closure in that month 

and area (36.06 µg/g).  The model prediction shown and the data can be compared to 

those in Figure 12, which has predictions for that same area and month of closure, but 

based on the area-specific model.  Some differences in the model predictions in Figures 

12 and 13 are apparent; from Figure 13 one would estimate a slightly lower initial 

probability of getting a low-concentration sample, and the rate of increase in the 

probability is also slightly less. 

  

 Whole Tissues 

 

 The analysis of whole tissue DA concentration data proceeded as described above 

for the analysis of the gonad concentrations.  The database contained many fewer 

measurements of DA in whole tissue; a total of 345 observations were available from 

closed boxes, for 335 days or less from the date of closure.  Of those samples, only 102 

(less than one third) were found to have DA concentrations less than 20 µg/g.  It appeared 

that if a box were closed because of whole tissue DA concentration, the overall likelihood 

of subsequently obtaining low-concentration samples that would justify re-opening was 

fairly small.  That observation does not imply that there are necessarily no trends with 

time since closure; indeed, given a low overall probability of finding low-concentration 

samples from closed boxes, it might be even more important to determine the best time to 

collect additional samples. 

 

 In the case of the whole tissue analyses, it was not clear that the bathymetry 

variables were the least informative (as was the case for the analysis of the gonad 

samples).  Thus, analyses were conducted and model selection procedures were pursued 

that included the bathymetric variables.  Unfortunately, only 310 of the 345 whole tissue 

observations were from boxes that had such bathymetric data; 35 observations from 

boxes E01, E33, IS09, and IS14 were excluded from the analyses because of missing 

data. 

 

 The initial examination of the functions of DAYS that appeared to best fit the data 

on low-concentration whole tissue samples showed the following patterns: 

 
Model: logit(p) = ββββ0 + ββββ1*DAYS

x
 

x = 

Maximized Log-Likelihood 

½ -209.092 

1 -208.038 

2 -205.962 

3 -204.519 

4 -203.676 

5 -203.257 

6 -203.128 

7 -203.203 

8 -203.42 

Note:  The log-likelihoods shown were calculated using all 345 of the whole tissue samples.  Conclusions 

about the best function of DAYS based on these values were considered satisfactory for determining the 

best function for the portion of the whole-tissue database having bathymetry data. 
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As that table shows, the best choice for a function of DAYS would be DAYS
6
, the 

function that gave the largest log-likelihood.  Higher powers of DAYS were not as good.  

In addition to DAYS
6
, we also investigated DAYS

2
 and DAYS

3
, since those choices were 

also part of the analysis of the gonad concentrations. 

 

 The three bathymetric variables were examined with those three functions of 

DAYS to see if one was clearly better than the others.  In terms of the likelihoods, 

AVGDEPTH, the average depth of a box, was uniformly better, over the three functions 

of DAYS, as shown by the log-likelihoods in the following table: 

 
 Function of DAYS 

Bathymetric Variable DAYS
2
 DAYS

3
 DAYS

6
 

MINDEPTH -186.191 -185.159 -184.401 

AVGDEPTH -178.862 -178.279 -177.822 

MAXDEPTH -188.105 -187.3 -186.706 

 

Because the variable AVGDEPTH gave larger log-likelihoods than the other two 

bathymetric variables, no matter the choice of DAYS function, AVGDEPTH was used in 

the following model selection procedure as the only bathymetric parameter. 

 

 As discussed above in connection with the analysis of the gonad concentrations, 

variables that completely or almost completely separate Y=1 observations from Y=0 

observations invalidate the maximum likelihood estimation procedure used to fit logistic 

regression models.  For the whole tissue data, this was an issue for the MON variable; 

some values of MON had all Y=0 observations and so MON as defined above could not 

be used in the analysis of the whole tissue data.  But because the timing of closure was 

determined to be so important in the analysis of the gonad data, we wanted to retain some 

variable that represented such timing issues.  In this case, we decided to lump certain 

months together to avoid the problem.  So, for this analysis, the months of January 

through April were lumped together, and November and December were lumped 

together.  All other months (May through October) were considered separately from one 

another. 

 

 Given that definition of the explanatory variables, the 301 observations 

considered here (of which 99 had low DA concentrations) were distributed by area and 

month-group as follows: 

 
 Area 

Month of 

Closure 

C E J M NM O S All 

Jan-Apr 1 11 5   2 3 22 

May  1  8 3  3 15 

Jun  8  10  47 5 70 

Jul 3   8  40  51 

Aug  11  5  60  76 

Sep       12 12 

Oct  27  7  3 9 46 

Nov-Dec    3 5 10  18 

Total 4 58 5 41 8 162 32 310 
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 The forward selection process of covariables to include with the chosen functions 

of DAYS proceeded as summarized here: 

 
 Base Model (Function of DAYS) 

 DAYS
2
 (-190.5) DAYS

3
 (-189.5) DAYS

6
 (-188.8) 

Step Var. Added p-value Var. Added p-value Var. Added p-value 

1 MON-group 

(-141.0) 

1.67E-18 

 

MON-group 

(-140.7) 

3.24E-18 

 

MON-group 

(-140.4) 

5.13E-18 

 

2 AREA 

(-113.2) 

3.54E-10 

 

AREA 

(-113.4) 

5.71E-10 

 

AREA 

(-113.9) 

1.13E-09 

 

3 AVGDEPTH 

(-109.6) 

0.0072 

 

AVGDEPTH 

(-109.7) 

0.0065 

 

AVGDEPTH 

(-110.1) 

0.0059 

 

Notes:  In parentheses are the log-likelihood values associated with the corresponding models. 

 

All three base models added the same main effects, which included the bathymetric 

variable AVGDEPTH, but did not include the concentration level causing closure (LEV).  

The month-group entered first in each case followed by area and then AVGDEPTH.   

 

 Interactions of the function of DAYS with the three main effects shown above as 

well as with LEV were checked to see if they significantly improved the fit of the models 

to the data.  Neither the interaction with AVGDEPTH nor the interaction with LEV 

significantly improved the fit.  The interactions with area and with month-group could 

not be carried out because of the separation problem mentioned above.  Apparently, when 

one of those interactions is included in the models, some combination of the DAYS 

function and the other term (say area) is such that all the Y=1 observations can be 

separated (or nearly separated) from the Y=0 observations.  This would be the case if all 

the observations above (or below) some value of DAYS were all Y=1 (or all Y=0), but 

the inclusion of the interaction terms means that that cut-off value could be different for 

every area.  In any case, it was not possible to evaluate the interactions of the function of 

DAYS with area or month-group, so the models shown in the above table are taken to be 

the selected models, since LEV and AVGDEPTH did not add significant interactions. 

 

 The three base model fits to the proportions derived from the observations are 

shown in Figures 14-16.  Again, as in the case of the analysis of the gonad samples, these 

base models do not account for the covariables that were determined to be significant 

contributors to the fit of the model.  But they do give an indication of the overall trend in 

the data and the fact that the initial probability of obtaining a low-concentration sample is 

low and only increases after some considerable time has passed.  Given the higher degree 

of curvature achievable by the DAYS
6
 model compared to the DAYS

2
 or DAYS

3
 models 

(compare Figure 16 to Figures 14 and 15), it is not surprising that the former model was 

the best fitting of the base models.  For these graphs, the observed proportions were 

defined with reference to the following DAYS ranges and observed frequencies of low-

concentration samples: 
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Range of DAYS Number of Samples Proportion of Samples with 

Low Concentration 

0 32 0.38 

1-58 69 0.30 

68-160 73 0.22 

163-240 46 0.24 

241-300 47 0.26 

301-335 43 0.63 

 

 The goodness-of-fit statistics for the selected models for the three functions of 

DAYS are summarized in the following table:   

 
 Statistical Measure 

 R
2
 Concordance (%) H-L Statistic (p-value) 

DAYS
2
 Selected Model 0.420 90.4 1.90 (0.98) 

DAYS
3
 Selected Model 0.420 90.2 5.30 (0.73) 

DAYS
6
 Selected Model 0.419 89.9 6.88 (0.55) 

 

The fit statistics in that table indicate that the selected DAYS
2
 model appears to give a 

slightly better fit to the data, based primarily on the Hosmer-Lemeshow goodness-of-fit 

test result.  That is the case even though the base model for DAYS
2
 had the lowest 

maximized likelihood of the three models considered.  With the addition of the 

covariables, the DAYS
2
 model was able to provide a better match to the data, as indicated 

by the following table of observed and expected numbers: 

 
 Low-Concentration Samples Higher-Concentration Samples 

 Observed Expected Observed Expected 

Group 1 0 0.16 31 30.84 

Group 2 1 0.89 31 31.11 

Group 3 2 1.32 28 28.68 

Group 4 2 1.86 29 29.14 

Group 5 3 3.13 28 27.87 

Group 6 6 5.94 25 25.06 

Group 7 14 14.25 18 17.75 

Group 8 18 19.96 13 11.04 

Group 9 25 25.05 6 5.95 

Group 10 28 26.44 2 3.56 

 

The selected DAYS
2
 model may be the best option for planning the sampling of whole 

tissues from closed boxes. 

 

 As in the case of the gonad concentration data, only some of the areas are 

represented in the database.  Analogous to the treatment of gonads, we implemented the 

model selection process when COAST was used in place of AREA.  This was done for 

the function of DAYS that was the best fitting when using area, i.e., DAYS
2
.  The model 

selection process found that month-group was again the first covariable to enter the 

model.  But in this case, with no AREA variable, LEV was the next variable to enter, 

followed by AVGDEPTH.  COAST was not a significant contributor; apparently 
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designation of the coast from which a sample was obtained did not supply as much 

information about the probability of a low-concentration whole-tissue sample as did 

designation of the area from which it came.  However, LEV was significant in this model 

whereas it was not in the model with AREA; LEV may have supplied some of the 

information previously contained in the AREA covariable, which would happen if those 

two variables were correlated to some extent.  The final model selection step added the 

DAYS
2
 x AVGDEPTH interaction, a term that was not significant in the model that used 

AREA.  So, the final version of the whole-tissue, non-area model did not contain any 

covariable related to geographical location, but the impact of the bathymetric parameter 

was more pronounced.  The R
2
 for this model was 0.36, the concordance was 87.3%, and 

the p-value for the Hosmer-Lemeshow goodness-of-fit test was 0.087.  None of these 

values are as good as that for the selected DAYS
2
 model that used AREA.  The 

goodness-of-fit p-value, in particular, indicates a fit that is adequate but not superior.  

When possible (see the discussion below) the prediction of the probability of collecting 

low-concentration whole-tissue samples should use the selected model with the AREA 

covariable. 

 

 

DISCUSSION 

 

 Implementation 

 

 The purpose of the analyses discussed above was to help determine when 

sampling might be done in closed boxes, with the goal of not sampling so soon that there 

would be little likelihood of collecting enough samples with a low DA concentration (less 

than 20 µg/g).  On the other hand, it would be desirable to not delay sampling when there 

is a reasonable chance of collecting low-concentration samples.  The results presented 

above can be used in the following manner to help in that regard.   

 

   It is assumed for this exposition that the usual practice is to collect two samples 

from a closed box on any given day, with two such collections at least seven days apart 

being required for re-opening (assuming all four samples have DA concentrations less 

than 20 µg/g).  The logistic regression models discussed above predict the probability 

that a single sample will have DA concentration less than 20 µg/g, as a function of days 

since closure and other covariables.  Thus, one way to use the logistic modeling results is 

to determine the earliest day after closure such that the likelihood that 2 samples on that 

day and 2 samples seven days later will all have low DA concentrations is greater than P, 

where P is some target probability that is high enough to justify sampling. 

 

 Consider, as an example, P = 0.5, i.e., one wants to have at least an even chance 

that the four samples will have low concentrations.  The probability that all four have low 

concentrations is just the product of the probabilities that each one will have low 

concentration.
5
   A change of seven days will not change the model-predicted probability 

of low concentration much, so we can simplify the task a bit by finding the day after 

                                                 
5
 This calculation assumes that the observations are independent of one another. 
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closure where chance of a low concentration is (0.5)
¼
 = 0.84.  Such a choice will ensure 

that the estimated probability of getting four low-concentration samples will be at least 

0.5.  If some other value of P is deemed appropriate, substitute that value in the equation 

P
¼
 to find the day of choice. 

 

 The day that gives the calculated probability, P
¼
, can be found by using the 

spreadsheet, LOGISTIC_PREDICTIONS.xls, which accompanies this report.  That 

spreadsheet has four pages, two for gonads and two for whole tissues, each of which 

calculates the probabilities required for the corresponding tissue using the models 

indicated above to be the preferred choice for that tissue.  Each page has a plot that shows 

the predicted probabilities, as a function of the days since closure and as a function of the 

covariables included in the model.  So, for example, for the gonad concentration model, 

the user will have to enter the area of the closed box, the month in which closure 

occurred, and the DA level that caused closure.  The plot indicates how the probabilities 

for getting single low-concentration samples change and the corresponding numerical 

results can be used to identify a specific time.  Those numerical results are in column J, 

which gives the probability in question, and K, which gives the corresponding day on 

which that probability occurs.   

 

 As an example, suppose that a box is closed in July due to a gonad tissue DA 

contamination level of 30 µg/g and that the box is in area SM.  Figure 17 shows the plot 

that is obtained from the “Gonads Model” page of LOGISTIC_PREDICTIONS.xls when 

the user enters the required input (AREA = SM, MONTH=7, LEV=30).  Visually, it 

appears that to have P = 0.5, as in the above example, one must wait until about day 280 

after closure to get the desired single-sample probability of a low-concentration gonad 

sample, 0.84.  Looking at the spreadsheet set up for that input, one can confirm that, 

indeed, it is predicted to take 278 days to get to that probability of a low-concentration 

sample. 

 

 That procedure works well when the probability of getting a low-concentration 

sample increases as time since closure increases.  There are cases, as illustrated in Figure 

18 for the hypothetical case of a closure in a box in area NM in June due to 22 µg/g of 

DA in gonad tissues, where the probability is predicted to decrease with time.  In those 

instances, the model predicts that sampling ought to occur as early as possible to 

maximize the chance of reopening.  However, it may never be the case that a P even as 

high as 0.5 could be attained.  In the example shown in Figure 18, the maximal P would 

be about 0.08, if sampling was done 7 and 14 days after closure (where 0.08 is derived by 

looking at the spreadsheet and noting that for NM in June, with a 22 µg/g closure level, 

the probability of getting a low-concentration sample is about 0.534 on both day 7 and 

day 14 after closure; (0.534)
4
 = 0.08). 

 

 Similar examples and derivations can be obtained for whole tissues using the 

“Whole Tissues Model” page of LOGISTIC_PREDICTIONS.xls.  For those calculations, 

area and month of closure input is required, but in addition the average depth of the 

closed box must be input as well (but not the DA level causing closure), based on the 

logistic regression model selection process that identified the covariables that appeared to 
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significantly improve the fit of the model to the observations.  Average depth for most 

boxes can be found in the database that was created in the first task of this project. 

 

 The modeling that was done for the analyses reported here used a fixed date of 

closure and referenced subsequent results (about whether a suitably low concentration 

was observed) to that date of closure.  That was appropriate in the sense that the goal was 

to determine the likelihood of getting a low-concentration sample at any time after 

closure, where the presence of any samples collected earlier in the closure period were 

ignored.  That is, we were interested in estimating the probabilities as if there were no 

prior samples collected.   

 

 Operationally, for implementation in the field however, it would appear that the 

best course of action would be to update the predictions whenever subsequent collection 

in a closed box resulted in samples with DA concentrations at or above 20 µg/g.  That is, 

if a box was closed and then subsequently (some number of days later) samples were 

collected in that box with at least one of those samples having DA concentration of at 

least 20 µg/g, then for future planning of collection, the data input into the logistic 

regression models should reflect the most recent information regarding closure, and the 

“days since closure” should be calculated from the date of that most recent data 

collection.  For example, suppose a box is closed in June because of a DA concentration 

of 25 µg/g.  That box has samples collected from it in July, and one of those samples has 

DA concentration of 34 µg/g.  Then, in terms of using the logistic regression results for 

planning subsequent sample collection, one should input “July” as the month and “34” as 

the level causing closure.  That is so because, unlike the process by which the logistic 

regression models were developed, one can not ignore the most recent samples and 

determine what might happen if they did not exist.  

 

 The models have been developed for certain ranges of the covariables.  For 

example, the level of DA in gonads causing closure ranged from 20 to about 140 µg/g; 

for whole tissues the corresponding range was about 20 to 112 µg/g.  Model estimates 

were based on fitting data within those ranges of “closure concentrations.”  Care must be 

exercised when using the model with inputs outside this range.  For any modeling effort, 

extrapolation beyond the range of the fitted observations can be problematic, so users 

must be aware of that model predictions may be more uncertain when such extrapolation 

is necessary. 

 

 Besides the level causing closure, the only other extrapolations that might be 

necessary for the gonad concentration modeling is to other areas not included in our 

analyses.  It is for this reason that we provided the alternative analysis that used COAST 

as a covariable in place of area.  In practice, it might be best to use the COAST-based 

model to predict the probability of a low-concentration sample from an area not 

specifically included in the data set of gonad tissue data (areas H, J, M, NM, O, and SM 

were represented in the fitted data set).  Implementation in such instances can be 

accomplished using the page in LOGISTIC_PREDICTIONS.xls called “Gonads 

(COAST) Model.”  All boxes can be assigned to a coast (east – being areas E, M, S, and 

O – or west), so there should be no extrapolation when using that model for predictions. 
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 Similarly, LOGISTIC_PREDICTIONS.xls provides a page called “Whole 

(COAST) Model” that can be used when the area for a box under consideration is not one 

of those included in the fitted data (which were C, E, IS, J, M, NM, O, and S).  The box-

specific input, average depth, ranged from 11 to 87 meters in the fitted data; the user 

should be aware of possibly greater uncertainty in model predictions when making 

predictions for boxes that have average depth outside that range.  Moreover, as discussed 

above, the whole-tissue “COAST” model looks to have substantially less predictive 

ability than the selected whole-tissue model.  In fact, despite the fact that we have 

identified the page as the “Whole (COAST) Model” (by analogy to the gonads page and 

because of the process by which the model was selected), the “Whole (COAST)” model 

does not include the COAST variable (nor does it include any variable related to 

geographical location). 

 

 Follow-On Investigations 

 

 The previous discussions mentioned uncertainty in model predictions.  These 

uncertainties were from identifiable causes, such as extrapolating beyond the data used to 

fit the models.  But there are other sources of uncertainty that have potentially greater 

impact.  Those are often referred to as “model uncertainties” and have to do with the 

limitations imposed by the models chosen and the inherent uncertainty of estimating 

parameters of those models from a sample of observations.   

 

 Identification and quantification of such uncertainties is an effort worthy of 

additional follow-up.  We have not discussed or considered confidence limits on the 

parameters of the models (e.g., the coefficient for DAYS
x
 in our models) that would 

affect the predicted probabilities of obtaining a low-concentration sample.  Nor have we 

considered functions of DAYS other than the power functions presented above.  While 

those functions do represent a range of curve shapes (e.g., having different curvatures as 

nicely illustrated in Figures 1-3 and 14-16) they do not include all the possible shapes.  

Of particular interest might be models that are not monotonic, for which the predicted 

probability can increase and then decrease again as time since closure increases, or vice 

versa.   

 

 Logistic regression modeling offers the opportunity to identify the most important 

observations and those that may appear to be outliers.  These model “diagnostics” can be 

important for determining how to improve or modify the modeling effort and for 

interpretation of the results.  Such diagnostics have not been included in the analyses to 

date; their consideration could add to the usefulness and to the determination of the 

“robustness” of the predictions that have been derived. 

 

 The only interaction terms included in the models were those involving the 

function of DAYS and the covariables.  Other interactions, among the covariables 

themselves, could be examined.  These would not affect the slope of the logistic 

regression curves, but they could make the intercepts more “case sensitive.”  By that we 

mean, for example, that instead of having an intercept determined by a MON term (that 
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would apply across all areas) and an AREA term (that would apply across all months), 

one could get intercepts terms specific for each month/area combination.  It would be 

interesting to see if such interactions significantly improve the model fits. 

 

 These models have considered the time of closure only in terms of the month in 

which it occurred.  This was consistently one of the most important covariables that 

entered into the models.  But perhaps there are other representations of the closure date 

(based on knowledge of some associated meteorological or bathymetric variables) that 

might better account for the patterns of DA concentrations in closed boxes.  This may be 

particularly important for the analysis of the whole tissue concentrations, where some 

grouping of months was required to avoid the separation problems discussed above (Y=1 

observations completely or nearly separated from Y=0 observations by one or more of 

the explanatory variables); in lieu of the grouping that was used here (January through 

April in one group and November and December in another) there may be a better way to 

accomplish that grouping that is informed by such other considerations. 

 

 One note about the time of closing relates to the use of a “year” covariable.  These 

analyses intentionally did not include year.  Such a variable might have helped to explain 

more of the variability exhibited among the observations because year might correlate 

with other factors that could influence the course of DA concentrations, such as 

temperature, days of sunshine, or other types of environmental disruption.  However, in 

terms of predictions, such a covariable would have been useless – all future applications 

of these modeling efforts will be for years not included in the database, so there would be 

no way to make sense of such a variable for any implementation. 

 

 Rather, as noted in passing above, direct input and use of additional bathymetric 

or meteorological data (ones that might be correlated with “year”) would be the way to 

extend the models and potentially improve model predictive power greatly.  Then, those 

inputs, if deemed to be significant contributors to model fit, could be used in any specific 

implementation.  Moreover, in light of the importance of the box-specific bathymetric 

measurement, average depth, for predicting the probability of a low-concentration whole-

tissue sample, additional examinations of the available bathymetry data (or alternative 

data that might be recommended) with respect to the gonad concentrations might be 

warranted.  These and other possible extensions to the modeling should be examined for 

feasibility. 

 

 The application of the logistic regression modeling to the whole tissue data must 

be viewed as more uncertain generally than the modeling for the gonad tissues.  There 

were many more gonad samples (by nearly a factor of 6) in closed boxes and these 

samples were over more years of observation.  Although the selected models for whole-

tissue concentrations appeared to fit the data well (as judged by the R
2
 and concordance 

values as well as the goodness-of-fit test), the constraints on that modeling imposed by 

the separation issues discussed above have restricted the interactions that were able to be 

considered.  Continued updating of the whole-tissue model should be pursued and would 

be expected to resolve some of these issues as more data become available. 
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 Finally, a note in relation to additional data.  Since the completion of the analyses, 

more data have been received from FSAS covering the period from April through early 

October of 2004.  Those data have not been included in the analyses reported here.  

Clearly, they could serve the purpose of extending the whole-tissue concentration data set 

that was mentioned in the preceding paragraph.  In fact, for both gonads and whole 

tissues, those additional observations could be used in two ways.   

 

 First, they could be used as a “test set” to determine how well the model 

predictions match observations that have not been used to estimate parameters of the 

models.  This is an important aspect of validation that is lacking in many modeling 

contexts, so the opportunity presented by the additional data collection should be taken 

advantage of.   

 

 Second, the additional data can be used to update the estimates of the model 

parameters and, one would expect, allow better prediction through more accurate 

parameter estimation.  A continuing effort to incorporate such re-estimation might be 

considered a valuable investment and would certainly optimally integrate new data with 

previously collected information. 

 

 To incorporate the new data, either for use as a test set or for updating model 

estimation, those new data points need to be entered into the database that was created in 

an earlier task and that was extended through the early part of 2004 for this analysis.  On-

going updates of the database, with the option to revisit the analyses described here, are 

needed to maintain the best possible basis for making decisions about tissue collection in 

closed boxes, as discussed here, and for addressing larger issues of surveillance schemes 

that can be defined that meet requirements of the EU, provide adequate protection of the 

health and safety of the consumers of shellfish, and maximize the use of the scallop 

fisheries along the coast of Scotland.  

 

 

CONCLUSION 

 

 Logistic regression analyses have been successfully applied to the DA 

concentration data in both gonad and whole tissues of king scallops.  The modeling steps 

have identified functions of DAYS and covariables that appear to satisfactorily match the 

patterns in the database of observed concentrations.   

 

 It is worth reiterating that the modeling approach that has been adopted 

recognizes (in fact, is predicted upon the fact) that there is variability in the data.  Not all 

scallops (even ones co-located in the same box) have the same DA concentration; 

changes in DA concentrations are not in lock-step; sampling a small proportion of 

scallops in a box yields values that may differ from the true box-specific mean.  That is 

why a probabilistic approach is appropriate: the models are predicting the likelihood of 

low-concentration samples, and that likelihood is a result of the variability.  If, all the 

variability could be accounted for, then we could get perfect predictions.  But in all real-

life systems, including this scallop sampling system set up by FSAS, that level of 
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prediction can never be attained.  What we can hope for is that the sources of variability 

are identified and appropriately included in our model.  Rather than abandoning hope in 

the face of variability, the perspective of our modeling approach is that such variability 

can be accounted for and predictions (albeit in terms of probabilities) can be provided.  It 

is in this sense that the models presented here are considered successful: the predicted 

probabilities satisfactorily match the observed probabilities (obtained as a consequence of 

the various sources of variability) of obtaining low-concentration samples. 

 

 Those models can be used, as discussed above, to predict the likelihood of 

obtaining a low-concentration sample at various times after closure of a box; from such 

predictions, sampling plans that take account of the probability of successful reopening 

can be formulated.  As discussed previously, the spreadsheet tool that has been provided 

with this report yields such predictions on a closure-specific basis.  That is, the 

predictions depend on the factors associated with any given closure: the area in which it 

occurs, the month in which it occurs, and the DA concentration causing closure.  And, for 

implementation of the results of the logistic regression analyses, such closure-specific 

factors should be considered on a case-by-case basis. 

 

 Nevertheless, some sense of the overall model predictions with respect to the 

timing of resampling efforts can be identified (see the figures for specific instances).  

Although there is a chance that low-concentration samples will be obtained at any time 

after closure, for the most part, the predictions are such that sampling early after closure 

will result in a small chance of successful reopening.  That is a consequence of the low 

predicted probability of obtaining a single low-concentration sample and the fact that four 

consecutive low-concentration samples are needed for reopening.  In fact, the 0.84 

probability of a single low-concentration sample (yielding, as discussed in the examples 

given above, the moderate “50:50” chance of reopening a box closed due to a gonad 

concentration of 20 µg/g or more) would not be attained in many areas or months of 

closure until at least 60 days after closure, and often that level is not predicted to occur 

until much later than 60 days after closure. 

 

 From the stand-point of allocating scarce resources, sampling a closed box when 

the likelihood of successful reopening is low may be perceived as a waste of effort.  The 

most likely result would be no change in status.  If resources are taken away from 

monitoring other boxes (either closed boxes that have a better chance of successful 

reopening, or open boxes that may pose a risk to public health if high DA concentrations 

are missed because of lack of sampling) then premature resampling of a closed box with 

a low probability of successful reopening may in fact be detrimental both to the scallop 

fishery and to protection of public health. 

 

 From the standpoint of the analyses completed here or others that might follow, 

sampling of closed boxes at all times has been beneficial.  That is, that the patterns of DA 

concentration changes at all times since closure are better represented and the modeling 

can benefit from having observations to constrain the model fitting.  Indeed, from a 

modeling perspective, continued (if lessened) sampling at short times after closure would 

be useful.  But, as just argued, from the perspective of developing sampling plans that are 
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protective of public health as well as of the viability of the scallop fishery, such sampling 

does not appear to be optimal.   

 

 Again, each individual closure should be evaluated on a case-by-case basis using 

the spreadsheet tools provided with this document.  But to the extent that sampling at 

short times after closure is not predicted to yield a high probability of a successful 

reopening, sampling efforts may be more efficiently directed.  The analyses presented 

here, and the predictive tools that have been prepared as a result, can therefore form a key 

component, along with economic and health-protection considerations, of any sampling 

plan that FSAS intends to formulate.
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Figure 1:  Observed and Predicted Proportion of Low Concentration Gonad Samples; 

DAYS
1
 Base Model 
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Notes: Observed proportions were derived for each of seven DAYS ranges (0, 1-19, 20-

40, 41-80, 81-120, 120-200, 201-335) as the number of samples with low DA 

concentration (less than 20 µg/g) in that range divided by the total number of samples in 

that range. 
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Figure 2:  Observed and Predicted Proportion of Low Concentration Gonad Samples; 

DAYS
2
 Base Model 
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Notes: Observed proportions were derived for each of seven DAYS ranges (0, 1-19, 20-

40, 41-80, 81-120, 120-200, 201-335) as the number of samples with low DA 

concentration (less than 20 µg/g) in that range divided by the total number of samples in 

that range. 
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Figure 3:  Observed and Predicted Proportion of Low Concentration Gonad Samples; 

DAYS
3
 Base Model 
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Notes: Observed proportions were derived for each of seven DAYS ranges (0, 1-19, 20-

40, 41-80, 81-120, 120-200, 201-335) as the number of samples with low DA 

concentration (less than 20 µg/g) in that range divided by the total number of samples in 

that range. 
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Figure 4:  Model Predictions Compared to Observed Values and Proportions for Area H, 

Month of Closure April; Best Model Using DAYS
1
 for Gonad Samples 
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Figure 5:  Model Predictions Compared to Observed Values and Proportions for Area H, 

Month of Closure April; Best Model Using DAYS
2
 for Gonad Samples 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 112 224 336

Days after Closure

P
ro
b
 o
f 
L
o
w
 C
o
n
ce
n
tr
a
ti
o
n

Model Predictions Observed Values - H4 Observed Proportions

 
 

 

 



 

 35 

Figure 6:  Model Predictions Compared to Observed Values and Proportions for Area H, 

Month of Closure April; Best Model Using DAYS
3
 for Gonad Samples 
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Figure 7:  Model Predictions Compared to Observed Values and Proportions for Area O, 

Month of Closure July; Best Model Using DAYS
1
 for Gonad Samples 
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Figure 8:  Model Predictions Compared to Observed Values and Proportions for Area O, 

Month of Closure July; Best Model Using DAYS
2
 for Gonad Samples 
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Figure 9:  Model Predictions Compared to Observed Values and Proportions for Area O, 

Month of Closure July; Best Model Using DAYS
3
 for Gonad Samples 
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Figure 10:  Model Predictions Compared to Observed Values and Proportions for Area 

SM, Month of Closure October; Best Model Using DAYS
1
 for Gonad Samples 
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Figure 11:  Model Predictions Compared to Observed Values and Proportions for Area 

SM, Month of Closure October; Best Model Using DAYS
2
 for Gonad Samples 
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Figure 12:  Model Predictions Compared to Observed Values and Proportions for Area 

SM, Month of Closure October; Best Model Using DAYS
3
 for Gonad Samples 
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Figure 13:  Model Predictions Compared to Observed Values and Proportions for Area 

SM, Month of Closure October; Model Using DAYS
3
 and COAST for Gonad Samples 
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Figure 14: Observed and Predicted Proportion of Low Concentration Whole-Tissue 

Samples; DAYS
2
 Base Model 
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Figure 15: Observed and Predicted Proportion of Low Concentration Whole-Tissue 

Samples; DAYS
3
 Base Model 
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Figure 16: Observed and Predicted Proportion of Low Concentration Whole-Tissue 

Samples; DAYS
6
 Base Model 
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Figure 17:  Model Predictions for a Hypothetical Closure Occurring in Area SM in July, 

Due to a Gonad DA Level of 30 µg/g 
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Figure 18:  Model Predictions for a Hypothetical Closure Occurring in Area NM in June, 

Due to a Gonad DA Level of 22 µg/g 
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