ERRATA

Corrections to published RIFE reports

	Page, Section	Comment
RIFE 23 2017	Page 13, Technical summary	The two sentences starting "In Wales, " should be replaced with "In Wales, the representative person who received the highest dose from permitted releases of radioactivity consumed locally produced food at Trawsfynydd. The dose was 0.028 mSv in 2017."
	Page 42, Figure 2.2	The discharge data for non-uranic alpha (liquid) for 2017 was 9.43E+06 Bq, not zero. This is shown correctly in Figure 2.2 in RIFE-24
	Page 91, Table 2.12	The concentration of sulphur-35 in Half Moon Bay Seaweed was $9.4~Bq~kg^{-1}$
	Page 108, Table 3.2(a)	The correct value for ²³⁸ Pu in cod collected from Scrabster is 0.00035 Bq kg ⁻¹ (fresh).
	Page 145, Table 4.6(a)	The concentration of polonium-210 in Morecambe Mussels was 41 Bq kg ⁻¹
	Page 149, Table 4.8(a)	The concentration of strontium-90 in Southwold Harbour sediments was <6.6 Bq kg ⁻¹
	Page 164, Section 5.2	Replace "Gaseous and liquid discharges may be made under permit but were both reported as nil in 2017." With "Gaseous and liquid discharges may be made under permit. Gaseous discharges were reported as nil in 2017."
	Pages 220-221, Tables 8.7 (footnote a) and 8.9, Page 207, section 8.8	In Table 8.7, footnote a, the concentrations of polonium-210 and radium-226 the values are <0.010 Bq l ⁻¹ and 0.012 Bq l ⁻¹ , respectively. The revised doses are given (in bold) in Table 8.9 (abbreviated below).
		Subsequently (on page 207) "The mean annual dose from consuming drinking water in the UK was assessed as 0.015 mSv in 2017 (Table 8.9). The highest annual dose was estimated to be 0.028 mSv for drinking water from Matlock, Derbyshire. The estimated doses were dominated by naturally occurring radionuclides and are similar to those in recent years."

Region	Mean Exposure, m	Sv per year	Maximum exposure	, mSv per year	
	Man-made radionuclides	Naturally occurring radionuclides	All radionuclides	Location	All radionuclide
England	<0.001	0.028	0.028		0.028
UK	<0.001	0.014	0.015	Matlock, Groundwater, Derbyshire	0.028

	Page, Section	Comment
	Page 241, Table A2.1, Dounreay (Vulcan)	The "Beta" category should read "All other radionuclides"
	Page 249, Table A2.4	The transfer data for Dounreay should read: Volume – $4.88E+02$ m³, Alpha – $2.48E+09$ Bq and Beta/Gamma – $4.54E+10$ Bq
RIFE-22 2017	Page 135, Table 4.2(b)	The mean gamma dose rate for Lydney Rocks should read 0.099.
	Page 246, Table A2.3	Niobium-84 should read Niobium-94.

Previous RIFE reports (RIFE 9,11, 13-22) Table A2.1

Gaseous discharges from Dounreay

In April 2017, DSRL notified SEPA that incorrect duct flowrate information had been used in the calculation of gaseous tritium and non-alpha discharges from the PFR facility. Further to this, DSRL have also undertaken a site wide review of their discharge monitoring arrangements. This review identified improvements in particulate flow measurement and the calculation of tritium discharges going back to 2003 for some radionuclide groupings. The revised discharge data for tritium, alpha, beta and non-alpha from Dounreay are given in the table below. This table also supersedes the previously published "Gaseous Discharges from Dounreay" (RIFE 15-22) errata item.

	,		
	Year	Revised Discharges	Revised % of annual limit
Prototype Fast Reactor: Tritium	2009	2.55E+11	2.4
	2010	7.19E+10	<1
	2011	4.74E+10	<1
	2012	9.56E+10	<1
	2013	6.18E+09	<1
Discharge authorisation revised 2014:	2014	8.05E+07	4.7
Non-alpha	2015	1.21E+08	7.9
	2016	1.11E+08	6.6
Discharge authorisation revised 2014:	2014	3.25E+11	1.9
Tritium ^a	2015	4.33E+10	<1
	2016	4.46E+10	<1
East Minor Sources: Alpha	2003	1.31E+05	<1
_	2005	7.75E+04	<1
_	2007	7.86E+04	<1
_	2008	6.27E+04	<1
_	2009	9.24E+04	<1
	2010	6.38E+04	<1
	2011	7.43E+04	<1
	2012	6.06E+04	<1
	2013	8.80E+04	<1
East Minor Sources: Beta	2003	1.31E+05	<1
	2005	7.75E+04	<1
_	2007	7.86E+04	<1
	2008	6.27E+04	<1
-	2009	9.24E+04	<1
_	2010	6.38E+04	<1
-	2011	7.43E+04	<1
_	2012	6.06E+04	<1
_	2013	8.80E+04	<1

^a Discharge data for tritium (2014-2016) are still under review. Should these values be revised, data will be updated in RIFE 25

	Page, Sect	ion	Comment			
Previous RIFE reports (RIFE 15-22 inclusive)			Gaseous Discharges fr In April 2017, DSRL r information had been and non-alpha dischar for tritium and non-alp 2014 are for the period details).	notified SEPA that used in the calcu- ges from the PFI what discharges are	lation of gase R facility. The re shown below	ous tritium revised data w. Values for
			<u>, </u>	Year	Revised Discharges	Revised % of annual limit
			Prototype Fast Reactor:	2009	2.55E+11	2.4
			Tritium	2010	7.19E+10	<1
				2011	4.74E+10	<1
				2012		<1
				2013	6.18E+09	<1
			Discharge authorisation revis			4.7
			Non-alpha	2015	1.21E+08	7.9
				2016		6.6
			Discharge authorisation revis	ed 2014: 2014	3.25E+11	1.9
			Tritium	2015	4.33E+10	<1
				2016	4.46E+10	<1
			460 tonnes of spent ox compared with an orig reprocessing throughp The reprocessing of sp 390 tonnes of fuel, con	inal target of 43. ut since NDA to ent Magnox fue	5 tonnes, and o ownership of 1 for 2015/16	the highest f the site. was a total o
	Page 50, F	igure 2.8	compared with an orig	inal target of 43 ut since NDA to ent Magnox fue npared with an co otnote is not cor um-90 and caesi plotted incorrec	5 tonnes, and o ownership of l for 2015/16 original performent and no lours um-137 disch	the highest f the site. was a total of mance targe nger applies arge data for
	Page 50, F Page 98, S		compared with an orig reprocessing throughp The reprocessing of sp 390 tonnes of fuel, con of 477 tonnes." The fo The carbon-14, stronti 2015 (figure 2.8) were	inal target of 43 at since NDA to the total Magnox fue inpared with an cootnote is not corum-90 and caesi plotted incorrect 22.	5 tonnes, and o ownership of l for 2015/16 original performent and no lours the last	the highest f the site. was a total o mance targe nger applies arge data for
		ection 3.2	compared with an originary reprocessing throughp. The reprocessing of sp. 390 tonnes of fuel, con of 477 tonnes." The formal throughp. The carbon-14, stronting 2015 (figure 2.8) were in Figure 2.9 in RIFE-	inal target of 43 at since NDA to the total Magnox fue inpared with an contract of the total magnos fue inpared with an contract is not corum-90 and caesi plotted incorrect 22.	5 tonnes, and o ownership of lor 2015/16 original performent and no lours to low the l	the highest f the site. was a total o mance targe nger applies arge data for n corrected
	Page 98, S Page 143,	ection 3.2 Table	compared with an origoreprocessing throughp. The reprocessing of sp. 390 tonnes of fuel, con of 477 tonnes." The formal tonnes. The formal tonnes of fuel, strontic 2015 (figure 2.8) were in Figure 2.9 in RIFE-Replace Iodine-125 w.	inal target of 43 at since NDA to be the Magnox fue inpared with an control of the inpared with an control of the inpared with an control of the incorrect 22. Ith iodine-131 (to be of breakdown river banks" in	5 tonnes, and o ownership of 1 for 2015/16 original performent and no loum-137 dischtly, it is shown wice).	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table	compared with an origoreprocessing throughp. The reprocessing of sp. 390 tonnes of fuel, con of 477 tonnes." The formal tonnes. The formal tonnes of fuel, con of 477 tonnes. The formal tonnes of fuel, con of 477 tonnes. The formal tonnes of figure 2.8 in Figure 2.9 in RIFE-Replace Iodine-125 w. The concentration of processing fuel formal tonnes of fuel formal tonnes of fuel fuel formal tonnes of fuel fuel fuel fuel fuel fuel fuel fue	inal target of 43 at since NDA to be the Magnox fue inpared with an control of the inpared with an control of the inpared with an control of the incorrect 22. Ith iodine-131 (to be of breakdown river banks" in	5 tonnes, and o ownership of 1 for 2015/16 original performent and no lours of 1 for	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table Table 5.1	compared with an origoreprocessing throughp. The reprocessing of sp. 390 tonnes of fuel, con of 477 tonnes." The formal tonnes. The formal tonnes of fuel, con of 477 tonnes. The formal tonnes of fuel, con of 477 tonnes. The formal tonnes of figure 2.8 in Figure 2.9 in RIFE-Replace Iodine-125 w. The concentration of processing fuel formal tonnes of fuel formal tonnes of fuel fuel formal tonnes of fuel fuel fuel fuel fuel fuel fuel fue	inal target of 43 aut since NDA to the since NDA to the since NDA to the since Magnox fue appared with an control of the since of the s	5 tonnes, and o ownership of 1 for 2015/16 original performent and no lours of 1 for	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site Devonport	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table Table 5.1	compared with an origoreprocessing throughp The reprocessing of space 390 tonnes of fuel, con of 477 tonnes." The formal The carbon-14, strontic 2015 (figure 2.8) were in Figure 2.9 in RIFE-Replace Iodine-125 where the concentration of place 109 Bq kg-1. Devonport, the total defrom intertidal areas of 40.005, the table shouted as the process of the concentration of place 100 considerable and 100 consider	inal target of 43. ut since NDA to nent Magnox fue mpared with an co otnote is not cor um-90 and caesi plotted incorrec 22. uth iodine-131 (to lutonium-239+2 base of breakdow or river banks" in lid read. External radiation from intertidal areas, river banks or	5 tonnes, and 6 o ownership of 1 for 2015/16 original performent and no locum-137 discharged the shown wice). 240 in sediment and the table shown the table s	the highest f the site. was a total o mance target nger applies. arge data for a corrected art (pipeline) radiation ald read

	Page, Section	Comm	nent				
Previous RIFE reports (RIFE 19–21 inclusive)	Table A2.1	Gaseous discharges from Chapelcross Replace the Tritium and all other radionuclides discharge limits with 7.50E+14 and 2.50E+09, respectively. The authorisation was revised 1 May 2013.					-
RIFE-20 2014	201, Table 8.1	with thundert	ne exception	of Aldern	l incorrectly and incorrectly and ey <i>Fucus vesic</i> y. All other re	<i>culosus</i> wł	nich was
RIFE-17-20 2014	86, Table 2.11	The units of Mean beta dose rate in tissue should read uSvh ⁻¹				d uSvh ⁻¹	
RIFE-19 2013	183, Table 6.1	Cardiff, these are small changes to the <i>total dose</i> and source-specific assessments shown below. They apply to relevant parts of text, tables (1.2B, 1.4 and 6.1) and figure (1.3)					
Site Exposed		Exposure,	mSv per year				
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site
Total dose – liquid discharges	Adult occupants over sediment	0.006	<0.005	-	0.005	-	-
Source specific doses	s Prenatal children of seafood consumers	0.009	<0.005	_	0.009	_	_
	41, Figure 2.13	The cobalt-60 liquid discharge datum for 2013 (Figure 2.13, RIFE-19) was plotted incorrectly, it is shown corrected in Figure 2.13 in RIFE-20					
	247, Appendix A2.1	Chapelcross, replace All other nuclides limit of 7.50E+09 Bq with 5.15E+09 Bq					
	109, Figure 3.5	The discharge data for ⁶⁰ Co and ¹³⁷ Cs for 2013 (figure 3.5) were plotted incorrectly, they are shown corrected in Figure 3.5 in RIFE-20					
	232, Table 8.15	Eu-155 results have been revised					
	Location	Samp	ole source		reported 155	Eu i	revised ¹⁵⁵ Eu
	Firth of Clyde	East	of Gull Point		<0	21	0.72
	Firth of Clyde	SW o	f Lady Isle		<0	36	2.1
	Firth of Clyde	East	of Johnston's	s Point	<0.2	22	0.81
	Firth of Clyde	East	of Brodick		<0	39	1.8
	Clyde Estuary	The H	Hole		<0.	50	2.1
	Clyde Estuary	Kemp	ooch Point		<0.4	43	2.7

33, Table 1.2

Some data was missing from Table 1.2 C (electronic version only), revised table shown below.

Site	Representative person ^a	Exposure	, mSv
		Total	Dominant contributions ^b
C All sources			
Aldermaston and Burghfield	Infant milk consumer	< 0.005	Milk, ³ Hc, ¹³⁷ Csc, ²³⁸ U
Amersham	Local adult inhabitant (0-0.25km)	0.22	Direct radiation
Barrow	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment
Berkeley and Oldbury	Adult occupant over sediment	0.010	Gamma dose rate over sediment
Bradwell	Prenatal child of green vegetable consumers	<0.005	Green vegetables, potatoes, root vegetables, ¹⁴ C
Capenhurst	Local inhabitant aged 10y (0-0.25km)	0.080	Direct radiation
Cardiff	Infant milk consumer	0.010	Milk, ¹⁴ C, ³² P ^c
Chapelcross	Infant milk consumer	0.024	Milk, ⁹⁰ Sr, ²⁴¹ Am ^c
Derby	Adult consumer of locally sourced water	< 0.005	Water, ⁶⁰ Co ^c
Devonport	Adult fish consumer	< 0.005	Fish, ¹⁴ C, ²⁴¹ Am ^c
Dounreay	Adult green vegetable consumer	0.012	Domestic fruit, potatoes, root vegetables
Dungeness	Local adult inhabitant (0.5–1km)	0.021	Direct radiation
Faslane	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment
Hartlepool	Local adult inhabitant (0–0.25km)	0.024	Direct radiation, gamma dose rate over sediment
Harwell	Prenatal child of local inhabitants (0–0.25km)	0.010	Direct radiation
Heysham	Adult mollusc consumer	0.028	Fish, gamma dose rate over sediment, molluscs, ¹³⁷ Cs, ^{239/240} Pu, ²⁴¹ Am
Hinkley Point	Adult occupant over sediment	0.022	Gamma dose rate over sediment
Hunterston	Prenatal child of local inhabitants (0.25–0.5km)	0.021	Direct radiation
LLWR near Drigg ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over
			sediment, ¹²⁹ I ^c , ²¹⁰ Po
Rosyth	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment
Sellafield ^{e,g}	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment
Sizewell	Local adult inhabitant (0–0.25km)	0.021	Direct radiation
Springfields	Adult occupant on a houseboat	0.060	Gamma dose rate over sediment
Torness	Local adult inhabitant (0.5–1km)	0.020	Direct radiation
Trawsfynydd	Infant local inhabitant (0.25–0.5km)	0.017	Milk, ¹⁴ C, ²⁴¹ Am
Whitehaven ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, 129lc, 210Po
Winfrith	Infant milk consumer	< 0.005	Milk, ¹⁴ C
Wylfa	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment

- ^a Selected on the basis of providing the highest dose from the pathways associated with the sources as defined in A, B or C
- b Pathways and radionuclides that contribute more than 10% of the total dose. Some radionuclides are reported as being at the limits of detection and based on these measurements, an upper estimate of dose is calculated
- The assessed contribution is based on data being wholly at limits of detection
- d The effects of gaseous discharges and direct radiation are not assessed for this site
- The effects of liquid discharges from Sellafield, Whitehaven and LLWR near Drigg are considered together when assessing exposures at these sites because their effects are manifested in a common area of the Cumbrian coast
- The doses from man-made and naturally occurring radionuclides were 0.040 and 0.021 mSv respectively. The source of naturally occurring radionuclides was a phosphate processing works near Sellafield at Whitehaven. Minor discharges of radionuclides were also made from the LLWR near Drigg into the same area
- g The highest exposure due to operations at Sellafield was to a person living on a houseboat near Barrow

RIFE-18 2012

134, Table 4.1

Hinkley Point. These are small changes to the total dose and source specific dose shown below. The apply to relevant points of text, tables (S, 1.2, 1.3, 1.4 and 4.1) and figures (1.1, 4.1 and 6.2).

Site	Exposed	Exposure,	Exposure, mSv per year					
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site	
Total dose – all sources	Adult occupants over sediment	0.013	<0.005	<0.005	0.012	<0.005	<0.005	
Source specific doses	Seafood consumers	0.018	<0.005	_	0.017	_	_	

240, Appendix 2

Third entry on the table – Sellafield – the discharges during 2012 (Bq and % of annual limitb) columns and should have read:

Beta	1.03E+09	2.5
Antimony-125	3.20E+09	11
Caesium-137	1.59E+08	2.7

	Page, Section		Comment					
	, 6		The River Ribble houseboat dose rate datum for 2012 (figure 2.3, RIFE-18) was plotted incorrectly, it is shown corrected in Figure 2.4 in RIFE-19					
	134, Table 2.18			apply to r	mall changes relevant poin			
Exposed	Exposure, 1	mSv per yea	r					
population ^a	Total	Seafood (nuclear industry discharge	Seafood (other discharges) es)	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways	Direct radiation from site
Total dose – max effect of gaseou and direct radia	s release							
Infant root vege consumers	table 0.011	_	_	0.011	-	_	_	
	196, Table 7.7		Oil & Gas (Offshore)	ed previous to should have een corrected	been class	sified as O	il & Gas
RIFE-17 2011	52, Section 2		underneath t	he bar cha	ar labels from art incorrectly nown in RIF	y and sho		
	61, Section 2			imers of lo	pecific doses ocally grown		-	
	209, Section 9		_		nould read: T nel were also			
	240, Appendix		•	al equivale 7.5 2.4 -99 1.0	e – Capenhu ent) ^a Bq colu 50E+06 40E+06 00E+08 25E+09	`		_

	Page, Section	Comment				
RIFE-14-17 2011	CD, Appendix 1	Table X2.2 Sellafield Q – Ravenglass nature warden assessment, the ingestion and inhalation rates of sediment have been incorrect, they should have read:				
		RIFE-14 3.1 10-3 kg y- ¹ mud by inadvertant ingestion 5.6 10-5 kg y- ¹ mud by resuspension and inhalation				
		RIFE-15 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation				
		RIFE-16 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation				
		RIFE-17 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation				
RIFE-16 2010	30, Table 1.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am				
	37, Section 2	Line 13, paragraph 3, second column should read The dose to wildfowlers and farmers from exposure over salt marsh was 0.032 mSv, which was less than 4 per cent of the dose limit for members of the public of 1 mSv. The small decrease in dose from 0.036 mSv (in 2009) was due to lower gamma dose rates over marsh in 2010.				
	100, Section 3	The graph in Figure 3.2 is missing 2010 data. The data for 2010 is shown in Figure 3.2 RIFE 17				
	122, Section 4	Line 7, paragraph 1, first column should read An increase in the fish and crustacean consumption rates has been observed, together with a decrease in the mollusc and occupancy rates, in comparison with those of the previous survey reported in 2006.				
	Appendix 1, Annex 2	Table X2.2 Sellafield Group N winkle consumption should have said 15kg y ⁻¹ (not 18 kg y ⁻¹)				
RIFE-15 2009	233, Table A2.1	MoD Coulport under reported discharges for the end of 2009. The ³ H discharge for 2009 should have been 3.40 E-03 TBq.				
	249, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am				
RIFE-14 2008	12, Figure S1	Both bars for Bradwell should be the same height. The bar for exposures due to liquid wastes is wrong.				

	Page, Section	Comment								
RIFE-14 2008	33, Section 2	Springfields, do Lines 1 & 2 sec pathways fro which was less	ond colur m gaseou	nn shoul	rges were l	less than	0.005mSv			
	51, Figure 2.22	The bar for Wh			should hav	e been th	ne same			
	109, Section 4	Gaseous discharges and terrestrial monitoring Line 28, first column should read The results of monitoring for 2008								
	167, Table 6.3a	Results for Cardiff East WWTW should have been:								
		Location or selection ^b	No. of sampling observ-	Mean ra Bq kg ⁻¹	dioactivity co	ncentration	ı (fresh)ª,			
			ations ^c	Organic						
				³ H ^e	³H	³H ^f	14 ^c			
	Terrestrial samples Crude effluent Final effluent Sludge pellets Solids from crude effluent	Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW	3E 3E 3E 3E	<150 <60	<220 <70 76000 <7500	82 80	<11 <11 740 <1800			
	225, Table A2.2	Sellafield (sea pread 2 10 ⁴	oipelines)	Tritium	discharge l	limit sho	uld have			
	236, Table A4.2B	Trawsfynydd, s Adult fish consu		d 0.010			e rate over Cs, ²⁴¹ Am			
RIFE-13 2007	127, Table 4.5a	The ²¹⁰ Po and ²¹⁰ Pb results are the wrong way round for South Gare winkles. ²¹⁰ Po should be 11 and ²¹⁰ Pb should be 0.46 Bq kg ⁻¹								
	153, Table 5.1	Derby, the total and water should	_	_		n intakes	of sediment			
	161, Section 6 Key points	Line 17 second • The total dose			ad					
	236, Table A4.2B	Trawsfynydd, s Adult fish consu		d 0.014			e rate over Cs, ²⁴¹ Am			
	239, Appendix 5	Line 3 first colu indicated that				e no adv	rerse impact			
RIFE-12 2006	70, Table 2.7	The concentration been 29.	on of ²⁴¹ A	m in wi	nkles at Di	rigg shou	ıld have			

	Page, Section	Comme	ent							
	103, Section 4 Key points		Line 22 second column replace with • At Dungeness, dose from gaseous discharges increased.							
	187, Figure 8.5	The range in the key should have been 2 to 8.								
	234, Table A4.2B		ynydd, should I children of fis ers	sh 0.013	Fish, gamma sediment, ⁹⁰ S	dose rate over				
Previous RIFE reports (RIFE 2–12 inclusive)		Gaseous Discharges of Alpha and Beta at Sellafield The published gaseous discharges of alpha and beta at Sellafi in the years, 1996, 1998-2001 and 2005-6 were reported incorrectly. The revised data is given below, the % of annual limit for Alpha in 1997 should read 12% (not 1.2%).								
		Year	Alpha (Bq)	% of annual Limit	Beta (Bg)	% of annual Limit				
		1996	1.80E+08	11	3.40E+09	7.1				
		1998	8.20E+07	4.8	1.60E+09	3.3				
		1999	1.70E+08	10	2.20E+09	4.6				
		2000	9.00E+07	5.3	1.10E+09	2.3				
		2001	7.20E+07	3.7	9.70E+08	<1				
		2005	8.90E+07	10	1.70E+09	4.0				
		2006	1.10E+08	13	2.00E+09	4.8				
					2.002.03	7.0				
RIFE-11 2005	270, Table A7.2B	Trawsf	ynydd, should	read	2.002.03	4.0				

	Page, Section	Comment		
Previous RIFE reports		Gaseous disc	charges of krypton-85 from	Dounreay Fast Reacto
		release of un the authorise RIFE-22 for	5, DSRL notified SEPA of the monitored krypton-85 gased discharge outlet at the Dimore detail). The krypton-land are presented below.	eous discharges throug FR facility (see table A
		Year	Revised Discharge (Bq)	Revised % of annual limit
		1995	1.46E+08	37
		1996	1.47E+08	37
		1997	1.25E+08	31
		1998	1.25E+08	31
		1999	1.25E+08	31
		2000	1.26E+08	31
		2001	1.25E+08	31
		2002	5.31E+08	130
		2003	3.57E+08	89
		2004	8.35E+07	21
		2005	2.37E+07	5.9
		2006	2.37E+07	5.9
		2007	2.55E+07	6.4
		2008	3.04E+07	7.6
		2009	3.61E+07	9.0
		2010	5.89E+07	15
		2011	9.29E+07	23
		2012	9.68E+07	24
		2013	1.07E+09	270
		Discharge autho	orisation revised 2014	
		2014	2.58E+08	<1
		2015	7.92E+08	<1
RIFE-11 2005	72, Table 3.3a		showed an incorrect value attration of ²³⁷ Np was 0.0003	
.003	112, Table 4.3a			³⁹ Pu+ ²⁴⁰ Pu ²⁴¹ Pu
	140, Table 5.5a		f < 0.13 for 241 Am in the <i>Fuo</i> tation was incorrectly put in	

Incorrect units were shown. The correct units were mBq l⁻¹.

206, Figures 9.5 and 9.6

Page, Section	Comment
225, Table 9.15	Incorrct headings in the top part of the table. Should have been as below:

Location	Sample source		No. of sampling	Mean ra	dioactivity	concentrati	on, Bq l ⁻¹	
			observ- ations	$^{3}\mathrm{H}$	$^{40}\mathrm{K}$	⁹⁰ Sr	¹³⁷ Cs	²¹⁰ Po
Wales			4			0.0026	0.0010	<0.010
Gwynedd Mid-Glamorgan	Cwm Ystradllyn Treatme Llwyn-on Reservoir	ent Works	4 4	<4.0 <4.0	<0.020 <0.045	0.0036 0.0030	0.0018 <0.0010	<0.010 <0.013
Powys	Elan Valley Reservoir		4	<4.0	< 0.050	0.0040	0.00090	< 0.010
	48, Table A1.2 51, Table A1.2	8.90 10-5	d discharge and 0.0017 ston Tritiun	74 TBc	respect	ively.		
		8.90 10 ⁻⁵ Alderma	and 0.0017	74 TBo n discl	respect	ively.		
2: : 8-11 C		Alderma 14.1 and For sedin	and 0.0017 ston Tritiun	n disclusively. es with	respect narge and unusua e resultir	ively. d % lim lly high ng samp	it should water colle bulk (l have

These amendments do not significantly affect any assessments charts or statements in the relevant RIFE reports.

ear	Site	Location	No. of sampling	Mean	radioact	ivity co	ncentratio	on (dry), B	q kg-1		
			observ- ations	57Co	⁶⁰ Co		⁶⁵ Zn	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹²⁵ S
002	Aldermaston	Reading (Kennet)	4			-					
	Bradwell	Stream draining south	4		~ 1						
	Bradwell	Maldon Waterside	2 2		<3.4 <4.0						
	Capenhurst	Rossmore (4.3 km downstream)	2								
	Cardiff	Canal West of pipeline	2 2								
	Devonport	Lopwell	2		<3.7						
	Dungeness Harwell	Pilot Sands Appleford	2 4		<0.9 <0.6						
	Sellafield	Day's Lock Caerhun	4 2		<0.5 <3.3			<9.6	<7.7	<23	<9.
	Selialield	Caernun	2		<3.3			<9.6	./</td <td><23</td> <td><9.</td>	<23	<9.
03	Aldermaston	Reading (Kennet)	4								
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	< 0.30	<1.1		<1.5				
	Bradwell	Waterside	2		<2.0						
	Cardiff Derby	Canal River Derwent (downstream)	1		<1.0						
	Devonport	Lopwell	2		<2.5						
04	Aldermaston	Reading (Kennet)	4								
		Aldermaston	4								
	Amersham	Stream draining south Upstream of outfall (Grand Union Canal) 2	4	< 6.4	<1.8		<4.1				
	Cardiff Sellafield	Canal Caerhun	2 2		<1.6			<4.5	<2.2	<12	<13
	Selialield	Caemun	2		<u></u>			\4.3	~2.2	<u> </u>	<u></u>
05	Aldermaston Amersham	Reading (Kennet) Upstream of outfall (Grand Union Canal) 2	4	<5.3	<1.6		<3.6				
	Cardiff	Canal	2	\J.3	<1.0		√3.0				
	Harwell	Lydebank Brook Appleford	4		<1.7 <2.5						
	Sellafield	Caerhun	2		<2.6			<8.8	< 6.8	< 20	<20
	Trawsfynydd	Bailey Bridge	2		<8.3						<44
ear	Site	Location	No. of	Mean	radioac	tivity co	ncentrati	on (dry), I	3q kg ⁻¹		
			sampling observ-								
			ations	$\frac{^{125}I}{}$	^{131}I	134 <u>Cs</u>	137Cs	144 <u>Ce</u>	¹⁵⁴ Eu_	155 Eu	^{241}A
02	Aldermaston	Reading (Kennet)	4				7.3				<1.
	D 1 11	Stream draining south	4				< 5.1				<1.
	Bradwell	Maldon Waterside	2 2			6.5 3.9	80 59				<4. <1.
	Capenhurst	Rossmore (4.3 km downstream)	2				<4.4				-
	Cardiff	Canal West of pipeline	2 2	<0.80 <3.1			2.4 33				
	Devonport	Lopwell	2	5.1			7.7				
	Dungeness Harwell	Pilot Sands Appleford	2 4				<0.90 <13				<1.
		Day's Lock	4				6.0				
	Sellafield	Caerhun	2			<3.4	430	<25	<7.3	<8.0	75
03	Aldermaston	Reading (Kennet)	4				8.0				<1.
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	<1.0	<550		6.3 <2.1				<2.
	Bradwell	Waterside	2		~550		35				<2.
	Cardiff Derby	Canal River Derwent (downstream)	1 4	<1.4			16				
	Devonport	Lopwell	2				<10				
04	Aldermaston	Reading (Kennet)	4				5.4				<1.
J-T	Muchilasiuil	Aldermaston	4				< 3.9				<1.
	Amersham	Stream draining south Upstream of outfall (Grand Union Canal) 2	4	< 0.80	<1 /		<2.8 10				1.6
	Cardiff	Canal	2	<1.5	\1. 4		11				
	Sellafield	Caerhun	2			<1.5	220	< 5.7	<7.3	<3.1	51
)5	Aldermaston	Reading (Kennet)	4				< 3.9				6.5
	Amersham Cardiff	Upstream of outfall (Grand Union Canal) 2	2	<1.0 <1.8	< 9.1		6.2				
	Harwell	Canal Lydebank Brook	4	∖1.δ			9.1 9.0				
	Sellafield	Appleford Caerhun	4 2			<2.5	<11 230	<9.3	<12	<5.3	59

	Page, Section	Comment			
RIFE-10 2004	75, Table 3.7	The entry for Haverigg should read 0.087.			
	45, Figure 3.8	The americium-241 discharge data for 2004 was plotted incorrectly, it is shown corrected in Figure 3.12 in RIFE-11.			
	87, Table 3.15 151 Table 6.1(a) 154, Table 6.3(a) 166 Table 7.3(a) 173, Table 8.1(a)	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.			

Site/location	⁶⁰ Co	106Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	^{234}U	²³⁵ U	²³⁸ U
Sellafield (Table 3.15)	< 0.43	<1.4	<0.73					
max	0.80	<1.5	< 0.80			16	0.64	15
Aldermaston (Table 6.1(a))								
max						7.8	0.29	7.2
Derby (Table 6.3(a))								
max						27	0.94	23
Cardiff (Table 7.3(a))				< 0.47	7.1			
max				< 0.50	7.7			
Drigg (Table 8.1)								
max						11	0.42	11

223, Table A1.1 The % annual limit for 106 Ru discharge at Sellafield was 7% (not 70%).

246, Table A5.1 Some dose per unit intake values were missing for 1 yr old. These were:

Table A5.1. Dosimetric data								
Radionuclide	Dose per unit intake by inhalation using ICRP-60 methodology (Sv Bq ⁻¹)							
Sr-90 [†]	1.2E-07							
Zr-95 [†]	2.1E-08							
Ba-140 [†]	2.6E-08							
Pb-210 [†]	4.0E-06							
Th-228 [†]	1.4E-04							
U-238	9.4E-06							

[†] Energy and dose per unit intake data include the effects of radiations of short-lived daughter products

	Page, Sec	ction		Comn	nent									
RIFE-9	82, Table	3.15		The fo	llowing	activit	y in soil	data we	re report	ted as be	eing Bq kg ⁻¹			
2003	138 Table	e 6.1(a)		(dry) v	(dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All									
	141, Tabl	e 6.3(a)		data a	data are averages unless stated.									
	151, Tabl	` '												
	157, Tabl	()												
	107, 1401	0.1(u)												
Site/location		⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am			
Sellafield (Table 3.15)		< 0.90	<3.3	<1.2	< 0.40	75	< 0.50				5.9			
` '	max	1.6	<4.2	<1.6		89	< 0.60	11	0.54	10	7.7			
Aldermaston (Table 6.1	(a))													
	max							11	0.48	11				
Derby (Table 6.3(a))								47	1.6	40				
C1:ff(T-1-1-7-2(-))	max				< 0.40	0.0		47	1.6	40				
Cardiff (Table 7.3(a))	may				<0.40	8.8 11								
Drigg (Table 8.1)	max					11								
D1188 (1001C 0.1)								6.7	0.26	6.7				

185, Table 9.12 Some data were incorrect. The amended version of the table is attached.

Location	Sample	No. of	Mean	radioactivit	y concentratio	n ^a in rainwater an	d air				
		sampling observ- ations	³ H ⁷	Be	⁹⁰ Sr ^b	¹³⁷ Cs	²¹⁰ Pb	²¹⁰ Po	²²⁸ Th	Gross alpha ^b	Gross beta ^b
Ceredigion											
Aberporth	Rainwater Air	12 4	<2.4	<1.6 0.0022		<0.053 <0.00000052	0.10 0.00017		*		
Co. Down											
Conlig	Rainwater Air	4 4		<1.5 0.0022		<0.022 <0.00000063	* 0.00015		*		
Dumfries and Gal	loway										
	Eskdalemuir Air	Rainwater 4	4	<2.7 0.0018	1.2	<0.00000043	<0.0098 0.00013	0.094	*	*	
North Yorkshire											
Dishforth	Rainwater Air	4 4		<2.2 0.0016		<0.039 <0.00000055	* 0.00014		*		
Oxfordshire											
Chilton	Rainwater Air	12 13		<1.5 0.0018	<0.00064	<0.032 <0.00000034	0.32 0.00027	< 0.000014	*	0.074	0.17
Shetland											
Lerwick	Rainwater	4		1.6		< 0.017	*		*		
	Air	4		0.0015		< 0.00000052	0.00010		*		
Suffolk											
Orfordness	Rainwater	4	<2.2	< 2.4		< 0.048	*		5.2		
	Air	4		0.0022		< 0.00000053	0.00020		*		

The concentration of $^{210}\mbox{Po}$ in Cornwall, River Fowey was $<\!\!0.0098$ Bq $l^{\text{-}1}.$ 187, Table 9.14

^{*} Not detected by the method used

a Bq I¹ for rainwater and Bq kg¹ for air
b Annual bulk analysis

Page, S	Section	Comment
± ~50, ~	J C C L I C I I	Committee

188, Table 9.16 A revised version is attached.

Country	Exposure, mSv Man-made radionuclides ^b	Natural radionculides ^c	All radionuclides
England	<0.001	0.028	0.028
Northern Ireland	< 0.001	0.026	0.026
Scotland Wales	<0.001 <0.001	d 0.027	d 0.027

a The maximum dose is selected for each nuclide group from data for individual sampling locations.

Many estimates of dose are based on concentration results at limits of detection.

214, Table A1.2 The data shown for Faslane are a duplication of the data for

59, Table 4.1 RIFE-8 2002

Two tritium results were omitted. The data are attached.

Rosyth and were included in error.

Table 4.1.	Beta/gamma radioad Sea vicinity and furth		e Irish
Location	Material	No.of sampling observ- ations	³H
Liverpool Bay	Flounder	2	<25
Mersey estuary	Flounder	2	<25

79, Table 4.14 82 Table 4.17 128, Table 7.1(a) 138, Table 8.2(a) The following activity in soil data were reported as being Bq kg-1 (dry) whilst they should have been reported as Bq kg-1 (wet). All data are averages unless stated.

Site/location	60Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U
Sellafield (Table 4.14)	< 0.80	<2.3	<1.2	68				
max	1.0	<2.7	<1.4	82				
Drigg (Table 4.17)								
max						6.9	0.30	6.5
Aldermaston (Table 7.1(a))								
max						8.7	0.35	8.3
Cardiff (Table 8.2(a))				< 0.30	6.4			
max					8.1			

102, Figure 6.1 The concentration of caesium-137 in Bradwell sediments was plotted incorrectly in Figure 6.1, it is shown corrected in Figure 5.1 of RIFE-9.

b Including tritium

c Including carbon-14 d Analysis of natural radionuclides was not undertaken

	Page, Sec	ction	Co	omment						
RIFE-1-8 1995-2002					penhurst l			_		harges of E1.
			Та	ible E1. I	Reassesse from Uren			harges of	uranium	
			Ye	ar			ginal reporte harge		Reassessed discharge TBq	
			19 19 19 19 19 19 20 20	94 95 96 97 98 99		6.74 2.69 1.11 6.80 6.87 8.15 9.64	1 10°9 1 10°9 0 10°8 1 10°7 0 10°8 7 10°8 1 10°8 1 10°8		2.41 10 ⁻⁷ 2.63 10 ⁻⁷ 2.75 10 ⁻⁷ 8.23 10 ⁻⁷ 4.90 10 ⁻⁷ 1.87 10 ⁻⁶ 1.01 10 ⁻⁶ 8.72 10 ⁻⁷ 9.77 10 ⁻⁷	
RIFE-7 2001 71, Table 4.8 80, Table 4.15(a) 93, Table 5.2(a) 122, Table 7.3 127, Table 8.2(a) 130, Table 9.1		(d	ry) whils	ing activi t they sho erages un	ould have	e been re			•	
Site/location		⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am
Sellafield (Table 4.8)	max	<0.80 1.2	<3.1	<1.1		80 97	9.3	0.34	9.1	5.8 6.0
Springfields (Table 4.1: Harwell (Table 5.2(a)) Featherstone position Beatherstone position B	max A (Table 7.3)	<0.40			<0.40	2.9	95 9.5 7.3	4.6 0.41 0.34	9.0 7.5	
Derby (Table 9.1)	max max				<0.33 <0.40	5.6 6.5	18 30	0.80 1.3	18 29	
	176, Tabl	le A1.1	ha	_	_			-		TBq shooshould ha
	181, Tabl	e A1.2		_	'A' disch 3 and 23	-		of limi	t for triti	um should
RIFE-6 2000	31, Section	on 3.5		was state	ed that the					al

	Page, Section	Comment					
	75, Table 4.16 124, Table 9.1	The following activity in soil data were reported as being Bq k (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). A data are averages unless stated.					
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Capenhurst (Table 4.16) max Derby (Table 9.1) max	8.5 24	0.35 0.96	8.4 23		
	155, Table 12.1	Target date for project have been March 2003		nd carbon-14	in seafood' shoul		
	166, Table A1.1	Discharges of tritium f TBq should have been			e) given as 0.87		
	168, Table A1.2	Sellafield Discharge limits of alp 0.00196 and 0.328 TBc activity should have be Discharges of tritium a 2.58 TBq should have Relevant percentages g and 34.	q. Percentagen 4.0 and and 14C from the deep 355 and been 355 and the deep	ge of limit for <1. m Sellafield § nd 2.94 TBq.	r alpha and beta given as 213 and		
RIFE-5 1999	71, Table 4.15(a) 73, Table 4.16 118, Table 9.1	The following activity (dry) whilst they shoul data are averages unles	d have beer	_			
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Springfields (Table 4.15(a)) max Capenhurst (Table 4.16) max Derby (Table 9.1) max	12 34	15 0.46 1.3	200 12 31		
	112, Section 8.2	The second sentence o tide washed pasture pa mSv y ⁻¹ respectively." read 0.042 mSv y ⁻¹ . The second sentence of tide washed pasture particles are tide washed pasture as the second sentence of tide washed pasture particles.	thways gav The dose do	re doses of 0.0 ue to the duck	032 and 0.009 c pathway should		
	123, Table 10.2	The concentration of ¹⁴ 960 Bq kg ⁻¹ (wet).	C in grass	from Billingh	aam was		
	162, Table A1.2	The Dounreay (Fast Ro	eactor) data	were duplica	nted.		
RIFE-4 1998	70, Table 4.12	The concentrations of were 0.61 and <1.8 Bq is available.					

	Page, Section	Comment					
	75, Table 4.15(a) 77, Table 4.16 116, Table 9.1	The following activity in soil data were reported as being Bq k (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). A data are averages unless stated.					
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Springfields (Table 4.15(a)) Capenhurst (Table 4.16) Derby (Table 9.1)	72 7.9 31	3.0 0.30 0.93	68 7.4 26		
	96, Table 6.4(a)	The concentration of <1.0 Bq kg ⁻¹ (dry). N					
	125, Section 11.1	Last but one paragra	ph. The estin	nated dose wa	s 0.094 mSv.		
	131, Section 11.8	Last paragraph, first	sentence. Re	place 1997 wi	ith 1998.		
1997 21 38	19, Table 1.1	Replace beta, tritium and 60Co Devonport (sewer) discharges with 1.97 10 ⁻⁶ , 2.22 10 ⁻⁶ , 5.60 10 ⁻⁷ TBq respectively. Replace alpha and beta limit and percentage Greenwich with 4.44 10 ⁻³ TBq and <1 respectively.					
	21, Table 1.2	Replace tritium Winfrith limit with 5 TBq.					
	38, Section 3.6.5	First paragraph. Reference to factor of 0.85 millisiever milligray should be ICRP (1996b). The following activity in soil data were reported as being the control of the c					
	70, Table 4.10						
	72, Table 4.12 81, Table 4.16	The following activi (dry) whilst they sho data are averages un	ould have been				
	72, Table 4.12	(dry) whilst they sho	ould have been				
	72, Table 4.12 81, Table 4.16	(dry) whilst they sho data are averages un	ould have been less stated.	n reported as	Bq kg ⁻¹ (wet). A		
	72, Table 4.12 81, Table 4.16	data are averages un Site/location Drigg (Table 4.10) Ravenglass (Table 4.12) Springfields (Table 4.12) Capenhurst (Table 4.16)	254U 9.9 18 31 9.5 27	2255U 0.37 0.60 1.5 0.40 0.97	9.5 16 30 9.5 24		
	72, Table 4.12 81, Table 4.16 121, Table 9.1	(dry) whilst they sho data are averages un Site/location Drigg (Table 4.10) Ravenglass (Table 4.12) Springfields (Table 4.12) Capenhurst (Table 4.16) Derby (Table 9.1) The maximum dose	euld have beer less stated. 224U 9.9 18 31 9.5 27 due to gaseou	0.37 0.60 1.5 0.40 0.97	9.5 16 30 9.5 24		

Page, Section	Comment				
58, Table 2	Replace ³⁵ S Oldbury limit of 0.8 TBq with 0.75 TBq. Replace ⁴¹ Ar Trawsfynydd limit of 350 TBq with 3500 TBq.				
85, Table 16 87, Table 18 91, Table 20(a) 95, Table 21	The following activit (dry) whilst they show data are averages unle	uld have bee		0 1 0	
119, Table 41	Gir M	224	225		
119, 14016 41	Site/location	^{234}U	^{235}U	$^{238}{ m U}$	
119, 14016 41					
119, 14016 41	Drigg (Table 16)	8.3	0.28	7.4	
119, Table 41	Drigg (Table 16) Ravenglass (Table 18)		0.28 0.56	7.4 15	
119, Table 41	Drigg (Table 16)	8.3 16	0.28	7.4	

Table 47 This was omitted in error. The data are attached.

Table 47. Radioactivi	ty in plants	near landfi	ll sites,	1996						
Sampling location	Material	No of samples	Mean	adioactivit	y concentra	ation (dry)*	, Bq kg¹			
	N2 6	14 1	³ H	¹⁴ C	90Sr	¹²⁵ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	239+240 Pu
Beddingham Lewes, East Sussex	Grass	4	<40 ±18	130 ±28	1.8 ±0.1	<0.19	<0.61	<0.54 ±0.30	<0.00099 ±0.00037	0.0067 ±0.0012
Cilgwyn Quarry, Gwynedd	"	4	<30	360 ±55	3.0 ±0.2	<063	<0.69	<5.2 ±0.9	< 0.0095	0.018 ±0.005
Lyndown, Devon	"	4	<28	150 ±30	2.4 ±0.2	<1.3 ±0.2	<0.60	<0.62 ±0.17	< 0.0010	<0.0024 ±0.0009
Witton, Cheshire	"	4	<38	130 ±33	0.76 ±0.12	<1.1 ±0.3	< 0.59	< 0.63	< 0.0013	0.0021 ±0.0016

^{*} Results are available for other artificial nuclides detectable by gamma spectrometry All such results are less than the limit of detection

99, Table 33(a)

RIFE-1 1995	38, Section 16.2	Last but one sentence, replace 1994 with 1995.					
	39, Section 16.4	First sentence, 2nd J	th 1995.				
	45, Table 1	Replace ²⁴¹ Am Sellafield (sea pipelines) limit of 1.3 TBq w 0.3 TBq. Replace ⁶⁰ Co Harwell (pipeline) percentage of 1.5 with 6.9					
	74, Table 16 99, Table 33(a)	The following activ (dry) whilst they she data are averages ur	ould have be	•	0 1 0		
		Site/location	²¹⁰ Po	²³⁸ Pu	239+240 Pu		
		Sellafield (Table 16)	64				
		Aldermaston (Table 33(a))		0.0091	0.36		
		max		0.016	0.56		

12±0.15 Bq kg⁻¹ (dry)

The concentration of ¹³⁷Cs in clay at Outfall (Pangbourne) was

Page, Section	Comment
133, Appendix 3	The average consumption rates of nuts and offal by 10 year old children were 1.5 kg y^{-1} . The consumption of whelks at Sellafield by group E (Whitehaven commercial) was 11 kg y^{-1} .
138, Appendix 6	The values of t_f and t_s were 0. The transfer factors for beef offal (241 Pu) and lamb (241 Pu) were 2 10^{-2} and 4 10^{-4} respectively.