ERRATA

Corrections to published RIFE reports

	Page, Section	Comment
RIFE 24, 2018	Page 47, Figure 2.5	The 2018 ⁹⁹ Tc value for Ribble Estuary Shrimp should be 0.12 Bqkg ⁻¹ (incorrectly reported as 0.77 Bqkg ⁻¹). This is plotted correctly in Figure 2.5, RIFE 25.
	Page 57, Figure 2.11	The 2018 ⁹⁹ Tc value at Bradwell should be <6.5 Bqkg ⁻¹ . This is plotted correctly in Figure 2.11, RIFE 25. The 2017 and 2018 ⁹⁹ Tc values for the Isle of Scilly should be 2.8 and 4.7 Bqkg ⁻¹ , respectively. These are plotted correctly in Figure 2.11, RIFE 25. Further data for Isle of Scilly are presented below.

Year	Location	Material	No. of	Mean rac	dioactivity co	ncentration (fresh), Bq k	g ⁻¹	
			sampling observations	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	⁹⁹ Tc	¹⁰⁶ Ru	^{110m} Ag
2017	Isle of Scilly	Seaweed	1	< 0.76	<0.86	< 0.44	2.8	<4.0	<0.72
2018	Isle of Scilly	Seaweed	1	<0.55	<0.70	<0.36	4.7	<3.4	<0.53
Year	Location	Material No. of sampling observations							
				¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁴ Ce	¹⁵⁵ Eu	²⁴¹ Am
2017	Isle of Scilly	Seaweed	1	<2.4	<0.64	<0.50	<1.5	<0.75	<0.54
2018	Isle of Scilly	Seaweed	1	<2.1	< 0.48	< 0.40	<1.8	< 0.84	< 0.57

All measurements are made on behalf of the Environment Agency

Page 74/75, Table 2.2a	The footnotes in the table have been applied incorrectly. Footnotes d and f should apply to Ribble Estuary Shrimps Footnotes e should apply to Ribble Estuary Mussels Footnote g should apply to Freshwater from Ulnes Walton
Table 2.3b and Table 2.10	The Beta radiation dose rates reported in Tables 2.3b and 2.10 are incorrectly presented. Corrected data presented below.
	The paragraph "The equivalent dose to skin" (page 45)
	Should read "The equivalent dose to skin as a result of fishermen handling their fishing gear (which is potentially contaminated with radioactivity) was 0.030 mSv in 2018."
	The sentence "In 2018, the skin doses to a fisherman from handling fishing gear" (Page 54)
	Should read "In 2018, the skin doses to a fisherman from handling fishing gear (including a component due to naturally occurring radiation), and a bait digger and shellfish collector from handling sediment, were 0.13 mSv and 0.064 mSv, respectively (Table 2.17)"
	These revised doses apply to relevant parts of Tables 1.4, 2.1 and 2.17.

Page, Section

Comment

Table 2.3(b) Monitoring of radiation dose rates near Springfields, 2018							
Location	Material or ground type	No. of sampling observations	μGy h ⁻¹				
Mean beta dose	rates		μSv h ⁻¹				
Springfields	Fishing net	1	< 0.089				
Springfields	Tarpaulin	1	<0.090				

Table 2.10 Beta radiation dose rates on contact with fishing gear on vessels operating off Sellafield, 2018

Vessel or location	Type of gear	No. of sampling observations	Mean beta dose rate in tissue, μSv h-1
101	Nets	1	<0.084
111	Nets	1	<0.083
South 1	Lobster pots	1	0.12
South 2	Lobster pots	1	<0.092
South 3	Lobster pots	1	<0.092
South 4	Lobster pots	1	<0.092

Page 80, Table 2.5 The value of 99Tc in Whitehaven Cod should read <0.15 Bq kg⁻¹

Page 109, Table 3.2(a) The Gross beta values in freshwater were omitted. These are presented below.

Location	Gross beta, Bq I-1
Loch Calder	0.090
Loch Shurrery	0.048
Loch Baligill	0.13
Heldale Water	0.060

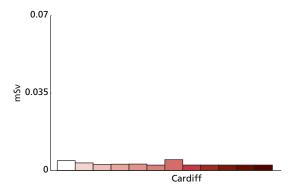
Page 112, Table 3.4(a) The 2018 activity concentration data for Seaweed from Bognor Rock were omitted. These are presented below.

Table 3.4(a) Concentrations of radionuclides in aquatic plants near Winfrith, 2018								
Material	Location	No. of	Mean radioactivity concentration (fresh), Bq kg ⁻¹					
		sampling observations	⁶⁰ Co	⁹⁹ Tc	¹³⁷ Cs	²⁴¹ Am		
Marine samples								
Seaweed	Bognor Rock	2E	<0.57	<1.7	<0.41	< 0.44		

E Measurements labelled "E" are made on behalf of the Environment Agency,

Page 115, 121 Page 115.

The key point for Dungeness should read


"Gaseous discharges of tritium and carbon-14 decreased, and liquid discharges of tritium increased and sulphur-35 decreased, from Dungeness B in 2018"

Page 121.

The sentence starting "Discharges of tritium..." should read "Discharges of tritium increased and sulphur-35 decreased (both by small amounts) from Dungeness B..."

Page 151, Figure 5.1 The caption descriptor should read "including discharges to Silchester sewer and Aldermaston Stream".

Page 176, Figure 6.1 The plot for Cardiff is incorrect, it is presented correctly below.

Page 209, Table 8.12

Table 8.12 was omitted from RIFE 24, these data are presented below.

The paragraph "SEPA took a series of marine sediment and seawater..." Should be replaced by

"In 2018, SEPA took a series of marine sediment and seawater samples from across Scotland and the results are given in Table 8.12. All radionuclides were reported as less than values in seawater. Tritium was positively detected in two seawater samples from Cloch Point. Caesium-137, europium-155 and americium-241 were positively detected in some sediment samples. The results are generally consistent with those to be expected from measurements at nuclear licensed sites in this report (see, for example, Section 3). Overall, the results support the concept of a reducing trend in concentration with distance from the Sellafield site, albeit confounded by natural variability due to sediment type."

Table 8.12 Concentrations of radionuclides in marine sediments and seawater - background survey in Scotland, 2018 ^a												
Sample	Sample source	No. of	Mean radioactivity concentration, Bq kg ⁻¹ (dry) ^b									
location and type		sampling observ- ations	³ H	⁶⁰ Co	⁹⁵ Nb	¹¹⁰ Ag	¹²⁵ Sb	¹³⁷ Cs	¹⁵⁵ Eu	²⁴¹ Am	Gross alpha	Gross beta
Marine Sedir	nents											
Firth of Forth	Lower Taylorton	1	<5.0	< 0.14	<8.7	< 0.33	< 0.40	4.4	< 0.41	0.81	220	1700
Firth of Forth	Bannockburn	1	<5.0	<0.13	<7.8	< 0.32	< 0.37	5.3	<0.29	0.82	220	1800
Firth of Forth	Fallin	1	<5.0	<0.15	<8.4	<0.34	< 0.43	6.9	<0.32	1.1	250	2100
Firth of Forth	Devon Confluence	1	<5.0	< 0.14	<5.3	< 0.33	<0.38	13	2.2	1.6	25	2000
Forth Estuary	Swing Bridge	1	<5.0	<0.10	<4.8	<0.19	<0.23	3.2	<0.26	<0.29	220	1500
Firth of Clyde	NW Cloch Point	1	<5.0	<0.11	<7.0	<0.26	<0.31	14	<0.21	4.3	190	1400
Firth of Clyde	West Cloch Point	1	<5.0	<0.12	<7.6	<0.28	< 0.40	29	<0.30	6.80	280	1600
Inner Clyde	Leven Confluence	1	<5.0	<0.10	<3.1	<0.13	<0.15	2.0	<0.19	<0.18	83	550
Inner Clyde	Dalmuir	1	<5.0	< 0.10	<6.2	<0.23	< 0.31	15	<0.23	0.8	82	1200
Inner Clyde	Kelvin	1	<5.0	<0.13	<8.9	< 0.33	< 0.44	38	<0.28	1.6	110	1200
Seawater												
Firth of Forth	Lower Taylorton	1	<1.0	<0.10	<0.24	<0.10	<0.16	<0.10	< 0.11	< 0.10		
Firth of Forth	Bannockburn	1	<1.0	<0.10	<0.23	<0.10	<0.12	<0.10	<0.10	< 0.10		
Firth of Forth	Fallin	1	<1.0	<0.10	<0.19	<0.10	< 0.14	<0.10	< 0.11	< 0.10		
Firth of Forth	Devon Confluence	1	<1.0	<0.1	<0.25	<0.10	<0.15	<0.10	< 0.14	< 0.10		
Forth Estuary	Swing Bridge	1	<1.0	<0.10	<0.26	<0.10	<0.15	<0.10	<0.13	< 0.10		
Firth of Clyde	NW Cloch Point	1	1.1	<0.10	<0.16	< 0.10	< 0.14	<0.10	< 0.10	< 0.10		
Firth of Clyde	West Cloch Point	1	1.4	<0.10	<0.17	<0.10	<0.14	<0.15	<0.10	<0.12		
Inner Clyde	Leven Confluence	1	<1.0	<0.10	<0.13	<0.10	<0.13	<0.10	< 0.11	< 0.10		
Inner Clyde	Dalmuir	1	<1.0	<0.10	< 0.17	<0.10	<0.18	<0.10	< 0.16	< 0.10		
Inner Clyde	Kelvin	1	<1.0	< 0.10	< 0.13	<0.10	<0.13	< 0.10	< 0.10	< 0.10		

Results are available for other radionuclides detected by gamma spectrometry. All such results are less than the limit of detection Except for seawater where units are $Bq \ l^{-1}$

Comment

Appendix 1, page 24, Table X2.2

The consumption and occupancy rates for the Sellafield M (Sellafield fishing community 2014-2018) group should read:

- 20 kg y⁻¹ Cod
- 35 kg y⁻¹ Other fish
- 11 kg y⁻¹ Crabs
- 14 kg y⁻¹ Lobsters
- 10 kg y⁻¹ Other crustaceans
- 7.6 kg y⁻¹ Winkles
- 4.2 kg y⁻¹ Other molluscs
- 870 hours y⁻¹ over mud and sand

The sentence "For molluscs (winkles and other molluscs)..." (page 52) should read

"For molluscs (winkles and other molluscs), the overall consumption rates were unchanged in the 2018 and decreased in the 2014–2018 datasets."

The revised doses to this group are given below. They apply to the relevant portions of Tables 1.4, 2.17 and 7.1. Table 2.16 has been corrected for RIFE 25 onwards.

The sentence "The doses from artificial radionuclides to people..." (page 53) should read

"The doses from artificial radionuclides to people, who consume a large amount of seafood, were 0.066 mSv (0.082 mSv in 2017) and 0.072 mSv (0.085 mSv in 2017) using the annual and five-year rolling average habits data, respectively, in 2018."

The sentence "Taking artificial and enhanced natural radionuclides together..." (page 53) should read

Taking artificial and enhanced natural radionuclides together, the source specific doses were both 0.44 mSv (values are rounded to two significant figures) for the both the annual and five-year rolling average habits data.

Representative person	Exposure, mSv per year								
	Total	Seafood (nuclear industry discharges)	Seafood (other discharges)	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways	Direct radiation from site	
Source specfic doses Seafood consumers									
Local seafood consumers (habits averaged 2014-18)	0.40 ^f	0.044	0.33	-	0.028	-	-	-	

^f The dose due to nuclear industry discharges was 0.072 mSv

	Page, Section	Comment
RIFE 23 2017	Page 13, Technical summary	The two sentences starting "In Wales, " should be replaced with "In Wales, the representative person who received the highest dose from permitted releases of radioactivity consumed locally produced food at Trawsfynydd. The dose was 0.028 mSv in 2017."
	Page 42, Figure 2.2	The discharge data for non-uranic alpha (liquid) for 2017 was 9.43E+06 Bq, not zero. This is shown correctly in Figure 2.2 in RIFE-24
	Page 91, Table 2.12	The concentration of sulphur-35 in Half Moon Bay Seaweed was 9.4 Bq kg ⁻¹
	Page 108, Table 3.2(a)	The correct value for ²³⁸ Pu in cod collected from Scrabster is 0.00035 Bq kg ⁻¹ (fresh).
	Page 145, Table 4.6(a)	The concentration of polonium-210 in Morecambe Mussels was 41 Bq kg ⁻¹
	Page 149, Table 4.8(a)	The concentration of strontium-90 in Southwold Harbour sediments was <6.6 Bq kg ⁻¹
	Page 164, Section 5.2	Replace "Gaseous and liquid discharges may be made under permit but were both reported as nil in 2017." With "Gaseous and liquid discharges may be made under permit. Gaseous discharges were reported as nil in 2017."
	Pages 220-221, Tables 8.7 (footnote a) and 8.9, Page 207, section 8.8	In Table 8.7, footnote a, the concentrations of polonium-210 and radium-226 the values are <0.010 Bq l ⁻¹ and 0.012 Bq l ⁻¹ , respectively. The revised doses are given (in bold) in Table 8.9 (abbreviated below).
		Subsequently (on page 207) "The mean annual dose from consuming drinking water in the UK was assessed as 0.015 mSv in 2017 (Table 8.9). The highest annual dose was estimated to be 0.028 mSv for drinking water from Matlock, Derbyshire. The estimated doses were dominated by naturally occurring radionuclides and are similar to those in recent years."

Table 8.9 Doses from radionuclides in drinking water, 2017								
Region	Mean Exposure, m	nSv per year	Maximum exposure, mSv per year					
	Man-made radionuclides	Naturally occurring radionuclides	All radionuclides	Location	All radionuclides			
England	<0.001	0.028	0.028		0.028			
UK	<0.001	0.014	0.015	Matlock, Groundwater, Derbyshire	0.028			

Page 241, Table A2.1, The "Beta" category should read "All other radionuclides" Dounreay (Vulcan)

	Page, Section	Comment			
	Page 249, Table A2.4	The transfer data for Dounreay Volume – 4.88E+02 m³, Alpha – 4.54E+10 Bq			eta/Gamma
RIFE-22 2017	Page 135, Table 4.2(b)	The mean gamma dose rate for	Lydney R	Rocks should	l read 0.099.
	Page 246, Table A2.3	Niobium-84 should read Niobium	um-94.		
Previous Table A2.1 RIFE reports (RIFE 9,11, 13-22)		Gaseous discharges from Dou In April 2017, DSRL notified S information had been used in the and non-alpha discharges from DSRL have also undertaken a s monitoring arrangements. This in particulate flow measurement discharges going back to 2003. The revised discharge data for the from Dounreay are given in the supersedes the previously pul from Dounreay" (RIFE 15-22)	EPA that is ne calculated the PFR for the wide review identification and the control of the cont	cion of gased facility. Furth eview of the entified importal calculation of radionuclide pha, beta and ow. This take Gaseous Dis	bus tritium her to this, bir discharge rovements of tritium groupings. d non-alpha ble also
			Year	Revised	Revised % of
		Prototype Fast Reactor: Tritium	2009 2010 2011 2012	Discharges 2.55E+11 7.19E+10 4.74E+10 9.56E+10	2.4 <1 <1 <1
		Discharge authorisation revised 2014: Non-alpha	2013 2014 2015 2016	6.18E+09 8.05E+07 1.21E+08 1.11E+08	4.7 7.9 6.6
		Discharge authorisation revised 2014: Tritium ^a	2014 2015 2016	3.25E+11 4.33E+10 4.46E+10	1.9 <1 <1
		East Minor Sources: Alpha	2003 2005 2007	1.31E+05 7.75E+04 7.86E+04	<1 <1 <1
			2008	6.27E+04 9.24E+04	<1
			2010 2011 2012	6.38E+04 7.43E+04 6.06E+04	<1 <1 <1
			2013	8.80E+04	<1
		East Minor Sources: Beta	2003	1.31E+05	<1
			2005	7.75E+04	<1
			2007	7.86E+04	<1
			2008	6.27E+04	<1
			2009	9.24E+04	<1
			2010	6.38E+04 7.43E+04	<1 <1
			2011	7.43E+U4	<u> </u>

^a Discharge data for tritium (2014-2016) are still under review. Should these values be revised, data will be updated in RIFE 25

2012

2013

6.06E+04

8.80E+04

<1

<1

	Page, Sect	ion	Comment			
Previous RIFE reports (RIFE 15-22 inclusive)			Gaseous Discharges from In April 2017, DSRL no information had been us and non-alpha discharge for tritium and non-alpha 2014 are for the period Metails).	tified SEPA thated in the calcust from the PFF a discharges are	lation of gase R facility. The e shown below	ous tritium revised data w. Values for
				Year	Revised Discharges	Revised % of annual limit
			Prototype Fast Reactor:	2009	2.55E+11	2.4
			Tritium	2010	7.19E+10	<1
				2011	4.74E+10	<1
				2012	9.56E+10	<1
				2013	6.18E+09	<1
			Discharge authorisation revised		8.05E+07	4.7
			Non-alpha	2015	1.21E+08	7.9
				2016	1.11E+08	6.6
			Discharge authorisation revised	2014: 2014	3.25E+11	1.9
			Tritium	2015	4.33E+10	<1
				2016	4.46E+10	<1
			460 tonnes of spent oxid compared with an origin reprocessing throughput The reprocessing of spen 390 tonnes of fuel, compared	nal target of 43: since NDA to nt Magnox fue	5 tonnes, and to ownership of 1 for 2015/16	the highest f the site. was a total o
	Page 50, F	igure 2.8	compared with an origin reprocessing throughput	al target of 43: since NDA to nt Magnox fue pared with an o tnote is not cor m-90 and caesi lotted incorrec	5 tonnes, and 6 o ownership of 1 for 2015/16 original performent and no lours turn-137 disch	the highest f the site. was a total of mance targe nger applies arge data for
	Page 50, F Page 98, S		compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontiur 2015 (figure 2.8) were p	nal target of 43: since NDA to nt Magnox fue pared with an ottoo the totoo and caesi lotted incorrect.	5 tonnes, and 6 o ownership of lor 2015/16 original perfor rect and no lourship, it is shown	the highest f the site. was a total o mance targe nger applies arge data for
		ection 3.2	compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontium 2015 (figure 2.8) were prin Figure 2.9 in RIFE-22	nal target of 43: since NDA to nt Magnox fue pared with an ottoo the transfer of the transfer	5 tonnes, and 6 o ownership of ownership of 1 for 2015/16 original perfor rect and no locum-137 discharge, it is shown wice).	the highest f the site. was a total of mance targe nger applies arge data for n corrected
	Page 98, S Page 143,	ection 3.2 Table	compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontiur 2015 (figure 2.8) were p in Figure 2.9 in RIFE-22 Replace Iodine-125 with The concentration of plus	al target of 43: since NDA to nt Magnox fue pared with an outnote is not corm-90 and caesi lotted incorrect. In iodine-131 (to atonium-239+2) The of breakdown fiver banks" in	5 tonnes, and 6 ownership of 1 for 2015/16 original performent and no locum-137 discharge, it is shown wice).	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table	compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontiur 2015 (figure 2.8) were p in Figure 2.9 in RIFE-22 Replace Iodine-125 with The concentration of plu was 109 Bq kg ⁻¹ . Devonport, the total dos from intertidal areas or r <0.005, the table should	al target of 43: since NDA to nt Magnox fue pared with an outnote is not corm-90 and caesi lotted incorrect. In iodine-131 (to atonium-239+2) The of breakdown fiver banks" in	5 tonnes, and 6 ownership of 1 for 2015/16 original performent and no locum-137 discharge, it is shown wice).	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table Table 5.1	compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontiur 2015 (figure 2.8) were p in Figure 2.9 in RIFE-22 Replace Iodine-125 with The concentration of plu was 109 Bq kg ⁻¹ . Devonport, the total dos from intertidal areas or r <0.005, the table should	al target of 43: since NDA to nt Magnox fue pared with an outnote is not corm-90 and caesi lotted incorrect. In iodine-131 (to atonium-239+2) The of breakdown fiver banks" in	5 tonnes, and 6 o ownership of 1 for 2015/16 original performent and no locum-137 discharge, it is shown wice). 40 in sediment and of "External the table shown into the table s	the highest f the site. was a total o mance targe nger applies arge data for a corrected at (pipeline)
Site	Page 98, S Page 143, 4.9(a) Page 161,	ection 3.2 Table Table 5.1	compared with an origin reprocessing throughput The reprocessing of sper 390 tonnes of fuel, compof 477 tonnes." The foot The carbon-14, strontiur 2015 (figure 2.8) were p in Figure 2.9 in RIFE-22 Replace Iodine-125 with The concentration of plu was 109 Bq kg ⁻¹ . Devonport, the total dos from intertidal areas or r <0.005, the table should	al target of 43: since NDA to nt Magnox fue pared with an other transfer of the pared with the pared of the	5 tonnes, and 6 o ownership of 1 for 2015/16 original performent and no locum-137 discharge, it is shown wice). 40 in sediment and the table shown the table	the highest f the site. was a total of mance targer applies arge data for a corrected at (pipeline) radiation ald read Gaseous plume related

	Page, Section	Comm	ient					
Previous RIFE reports (RIFE 19–21 inclusive)	Table A2.1	Gaseous discharges from Chapelcross Replace the Tritium and all other radionuclides discharge limits with 7.50E+14 and 2.50E+09, respectively. The authorisation was revised 1 May 2013.					-	
RIFE-20 2014	201, Table 8.1	with thundert	Iodine-129 data were entered incorrectly and should be removed with the exception of Alderney <i>Fucus vesiculosus</i> which was undertaken by radiochemistry. All other results reported as ¹²⁹ I were actually ¹³¹ I.					
RIFE-17-20 2014	86, Table 2.11	The ur	The units of Mean beta dose rate in tissue should read uSvh ⁻¹					
RIFE-19 2013	183, Table 6.1	specifi	Cardiff, these are small changes to the <i>total dose</i> and source-specific assessments shown below. They apply to relevant parts of text, tables (1.2B, 1.4 and 6.1) and figure (1.3)					
Site	Exposed	Exposure,	mSv per year					
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site	
Total dose – liquid discharges	Adult occupants over sediment	0.006	<0.005	-	0.005	-	-	
Source specific dose	Prenatal children of seafood consumers	0.009	<0.005	_	0.009	-	_	
	41, Figure 2.13	The cobalt-60 liquid discharge datum for 2013 (Figure 2.13, RIFE-19) was plotted incorrectly, it is shown corrected in Figur 2.13 in RIFE-20						
	247, Appendix A2.1	Chapelcross, replace All other nuclides limit of 7.50E+09 Bq with 5.15E+09 Bq						
	109, Figure 3.5	The discharge data for ⁶⁰ Co and ¹³⁷ Cs for 2013 (figure 3.5) were plotted incorrectly, they are shown corrected in Figure 3.5 in RIFE-20						
	232, Table 8.15	Eu-15	5 results h	ave been 1	revised			
	Location	Samp	le source		reported 155	Eu	revised ¹⁵⁵ Eu	
	Firth of Clyde	East o	of Gull Point		<0	21	0.72	
	Firth of Clyde	SW o	f Lady Isle		<0	36	2.1	
	Firth of Clyde	East o	of Johnston's	s Point	<0	22	0.81	
	Firth of Clyde	East o	of Brodick		<0	39	1.8	
	Clyde Estuary	The H	lole		<0.	50	2.1	
	Clyde Estuary	Kemp	och Point		<0.4	43	2.7	

33, Table 1.2

Some data was missing from Table 1.2 C (electronic version only), revised table shown below.

Site	Representative person ^a	Exposure, mSv			
		Total	Dominant contributions ^b		
C All sources					
Aldermaston and Burghfield	Infant milk consumer	< 0.005	Milk, ³ Hc, ¹³⁷ Csc, ²³⁸ U		
Amersham	Local adult inhabitant (0-0.25km)	0.22	Direct radiation		
Barrow	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment		
Berkeley and Oldbury	Adult occupant over sediment	0.010	Gamma dose rate over sediment		
Bradwell	Prenatal child of green vegetable consumers	<0.005	Green vegetables, potatoes, root vegetables, ¹⁴ C		
Capenhurst	Local inhabitant aged 10y (0-0.25km)	0.080	Direct radiation		
Cardiff	Infant milk consumer	0.010	Milk, ¹⁴ C, ³² P ^c		
Chapelcross	Infant milk consumer	0.024	Milk, ⁹⁰ Sr, ²⁴¹ Am ^c		
Derby	Adult consumer of locally sourced water	< 0.005	Water, ⁶⁰ Co ^c		
Devonport	Adult fish consumer	< 0.005	Fish. ¹⁴ C. ²⁴¹ Am ^c		
Dounreay	Adult green vegetable consumer	0.012	Domestic fruit, potatoes, root vegetables		
Dungeness	Local adult inhabitant (0.5–1km)	0.021	Direct radiation		
Faslane	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		
Hartlepool	Local adult inhabitant (0–0.25km)	0.024	Direct radiation, gamma dose rate over sediment		
Harwell	Prenatal child of local inhabitants (0-0.25km)	0.010	Direct radiation		
Heysham	Adult mollusc consumer	0.028	Fish, gamma dose rate over sediment, molluscs, ¹³⁷ Cs, ^{239/240} Pu, ²⁴¹ Am		
Hinkley Point	Adult occupant over sediment	0.022	Gamma dose rate over sediment		
Hunterston	Prenatal child of local inhabitants (0.25–0.5km)	0.021	Direct radiation		
LLWR near Drigg ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, 129Ic, 210Po		
Rosyth	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		
Sellafield ^{e,g}	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment		
Sizewell	Local adult inhabitant (0–0.25km)	0.021	Direct radiation		
Springfields	Adult occupant on a houseboat	0.060	Gamma dose rate over sediment		
Torness	Local adult inhabitant (0.5–1km)	0.020	Direct radiation		
Trawsfynydd	Infant local inhabitant (0.25–0.5km)	0.017	Milk, ¹⁴ C, ²⁴¹ Am		
Whitehaven ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, ¹²⁹ Ic, ²¹⁰ Po		
Winfrith	Infant milk consumer	< 0.005	Milk, ¹⁴ C		
Wylfa	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		

- ^a Selected on the basis of providing the highest dose from the pathways associated with the sources as defined in A, B or C
- b Pathways and radionuclides that contribute more than 10% of the total dose. Some radionuclides are reported as being at the limits of detection and based on these measurements, an upper estimate of dose is calculated
- The assessed contribution is based on data being wholly at limits of detection
- d The effects of gaseous discharges and direct radiation are not assessed for this site
- The effects of liquid discharges from Sellafield, Whitehaven and LLWR near Drigg are considered together when assessing exposures at these sites because their effects are manifested in a common area of the Cumbrian coast
- f The doses from man-made and naturally occurring radionuclides were 0.040 and 0.021 mSv respectively. The source of naturally occurring radionuclides was a phosphate processing works near Sellafield at Whitehaven. Minor discharges of radionuclides were also made from the LLWR near Drigg into the same area
- ^g The highest exposure due to operations at Sellafield was to a person living on a houseboat near Barrow

RIFE-18 2012

134, Table 4.1

Hinkley Point. These are small changes to the total dose and source specific dose shown below. The apply to relevant points of text, tables (S, 1.2, 1.3, 1.4 and 4.1) and figures (1.1, 4.1 and 6.2).

Site	Exposed						
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site
Total dose – all sources	Adult occupants over sediment	0.013	<0.005	<0.005	0.012	<0.005	<0.005
Source specific doses	Seafood consumers	0.018	<0.005	_	0.017	_	_

240, Appendix 2

Third entry on the table – Sellafield – the discharges during 2012 (Bq and % of annual limitb) columns and should have read:

Beta	1.03E+09	2.5
Antimony-125	3.20E+09	11
Caesium-137	1.59E+08	2.7

	Page, S	ection		С	omment					
	41, Fig	gure 2.3		R		as plotted	seboat dose r incorrectly, i			
	134, Ta	ble 2.18		be		apply to r	mall changes relevant poin			
Exposed	E	Exposure, m	ıSv per ye	ar						
population ^a	1	Total	Seafood (nuclear industry discharg		Seafood (other discharges)	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways	Direct radiation from site
Total dose – maxin effect of gaseous r and direct radiatio	elease									
Infant root vegeta consumers	ble (0.011	_		_	0.011	_	_	_	
	196, Ta	ble 7.7		O	il & Gas (0	Offshore)	ed previous to should have een corrected	been class	sified as O	il & Gas
RIFE-17 2011	52, Sec	tion 2		ur	derneath t	he bar cha	ar labels from art incorrectly nown in RIF	y and show		
	61, Sec	tion 2		re	•	imers of lo	pecific doses ocally grown			
	209, Se	ection 9					nould read: T nel were also			
	240, Ap	ppendix 2		lir Ut Ot Te		al equivale 7.5 2.4 99 1.0	e – Capenhu ent) ^a Bq colu 50E+06 40E+06 00E+08 25E+09			

	Page, Section	Comment
RIFE-14-17 2011	CD, Appendix 1	Table X2.2 Sellafield Q – Ravenglass nature warden assessment, the ingestion and inhalation rates of sediment have been incorrect, they should have read:
		RIFE-14 3.1 10-3 kg y-1 mud by inadvertant ingestion 5.6 10-5 kg y-1 mud by resuspension and inhalation
		RIFE-15 3.4 10-3 kg y- ¹ mud by inadvertant ingestion 6.3 10-5 kg y- ¹ mud by resuspension and inhalation
		RIFE-16 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation
		RIFE-17 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation
RIFE-16 2010	30, Table 1.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am
	37, Section 2	Line 13, paragraph 3, second column should read The dose to wildfowlers and farmers from exposure over salt marsh was 0.032 mSv, which was less than 4 per cent of the dose limit for members of the public of 1 mSv. The small decrease in dose from 0.036 mSv (in 2009) was due to lower gamma dose rates over marsh in 2010.
	100, Section 3	The graph in Figure 3.2 is missing 2010 data. The data for 2010 is shown in Figure 3.2 RIFE 17
	122, Section 4	Line 7, paragraph 1, first column should read An increase in the fish and crustacean consumption rates has been observed, together with a decrease in the mollusc and occupancy rates, in comparison with those of the previous survey reported in 2006.
	Appendix 1, Annex 2	Table X2.2 Sellafield Group N winkle consumption should have said 15kg y ⁻¹ (not 18 kg y ⁻¹)
RIFE-15 2009	233, Table A2.1	MoD Coulport under reported discharges for the end of 2009. The ³ H discharge for 2009 should have been 3.40 E-03 TBq.
	249, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am
RIFE-14 2008	12, Figure S1	Both bars for Bradwell should be the same height. The bar for exposures due to liquid wastes is wrong.

	Page, Section	Comment							
RIFE-14 2008	33, Section 2	Springfields, doses to the public Lines 1 & 2 second column should readpathways from gaseous discharges were less than 0.005mSv which was less than 0.5 per cent							
	51, Figure 2.22	The bar for Whitehaven in 2008 should have been the same height as the bar for 2007							
	109, Section 4	Gaseous discharges and terrestrial monitoring Line 28, first column should read The results of monitoring for 2008							
	167, Table 6.3a	Results for Care	diff East V	WWTW s	should hav	ve been:			
	Material	Location or selection ^b	No. of sampling observ-	Mean rad	dioactivity co	ncentration	ı (fresh)ª,		
Terrestrial samples Crude effluent Final effluent Sludge pellets Solids from crude effluent 225, Table A2.2		ations ^c	Organic						
				³ H ^e	³H	³ H ^f	14 ^c		
	Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW	3E 3E 3E 3E	<150 <60	<220 <70 76000 <7500	82 80	<11 <11 740 <1800			
	225, Table A2.2	Sellafield (sea pipelines) Tritium discharge limit should have read 2 10 ⁴							
	236, Table A4.2B	Trawsfynydd, s Adult fish consu		d 0.010			e rate over Cs, ²⁴¹ Am		
RIFE-13 2007	127, Table 4.5a	The ²¹⁰ Po and ²¹⁰ Pb results are the wrong way round for South Gare winkles. ²¹⁰ Po should be 11 and ²¹⁰ Pb should be 0.46 Bqkg							
	153, Table 5.1	Derby, the total exposure and exposure from intakes of sediment and water should have been <0.005 mSv.							
	161, Section 6 Key points	Line 17 second column should read • The total dose of 0.008							
	236, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.014 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am							
	239, Appendix 5	Line 3 first column should read indicated that it was likely there would be no adverse impact							
RIFE-12 2006	70, Table 2.7	The concentration been 29.	on of ²⁴¹ A	m in wir	ıkles at Dr	rigg shou	ıld have		

	Page, Section	Comme	ent			
	103, Section 4 Key points			nn replace with		ncreased.
	187, Figure 8.5	The ran	nge in the key	should have be	een 2 to 8.	
	234, Table A4.2B		ynydd, should I children of fis iers	sh 0.013	Fish, gamma sediment, ⁹⁰ S	dose rate over r
Previous RIFE reports (RIFE 2–12 inclusive)		The pulin the y incorred limit fo	blished gaseou ears, 1996, 19 ctly. The revis or Alpha in 199	998-2001 and 2 ed data is give 97 should read	of alpha and b 2005-6 were a n below, the	peta at Sellafield reported % of annual 2%).
		Year	Alpha (Bg)	% of annual Limit	Beta (Bg)	% of annual Limit
		1996	1.80E+08	11	3.40E+09	7.1
		1998	8.20E+07	4.8	1.60E+09	3.3
		1999	1.70E+08	10	2.20E+09	4.6
		2000	9.00E+07	5.3	1.10E+09	2.3
		2001	7.20E+07	3.7	9.70E+08	<1
		2005	8.90E+07	10	1.70E+09	4.0
		2006	1.10E+08	13	2.00E+09	4.8
RIFE-11	270, Table A7.2B		ynydd, should			
2005			l children of nts over sedim		Direct radiation dose rate ove	

	Page, Section	Comment		
Previous RIFE reports		Gaseous disc	charges of krypton-85 from	Dounreay Fast React
		release of un the authorise RIFE-22 for	o, DSRL notified SEPA of the monitored krypton-85 gases and discharge outlet at the Dimore detail). The kryptonand are presented below.	eous discharges throug FR facility (see table A
		Year	Revised Discharge (Bq)	Revised % of annual limit
		1995	1.46E+08	37
		1996	1.47E+08	37
		1997	1.25E+08	31
		1998	1.25E+08	31
		1999	1.25E+08	31
		2000	1.26E+08	31
		2001	1.25E+08	31
		2002	5.31E+08	130
		2003	3.57E+08	89
		2004	8.35E+07	21
		2005	2.37E+07	5.9
		2006	2.37E+07	5.9
		2007	2.55E+07	6.4
		2008	3.04E+07	7.6
		2009	3.61E+07	9.0
		2010	5.89E+07	15
		2011	9.29E+07	23
		2012	9.68E+07	24
		2013	1.07E+09	270
		Discharge autho	risation revised 2014	
		2014	2.58E+08	<1
		2015	7.92E+08	<1

Incorrect units were shown. The correct units were mBq l⁻¹.

206, Figures 9.5 and 9.6

Page, Section	Comment
225, Table 9.15	Incorrct headings in the top part of the table. Should have been as below:

Location	Sample source		No. of sampling	Mean radioactivity concentration, Bq l¹					
			observ- ations	^{3}H	$^{40}\mathrm{K}$	⁹⁰ Sr ————————————————————————————————————	¹³⁷ Cs	²¹⁰ Po	
Wales Gwynedd	Cwm Ystradllyn Treatm	ent Works	4	<4.0	<0.020 <0.045		0.0018	<0.010	
Mid-Glamorgan	Llwyn-on Reservoir	ciit works	4	<4.0			< 0.0010	<0.010 <0.013	
Powys	Elan Valley Reservoir		4	<4.0	< 0.050	0.0040	0.00090	< 0.010	
~	71 T 11 A 1 O	A 1 1	, T	1. 1		1.0/.1	. 1 1	11 1	
2:	51, Table A1.2		ston Tritiun 8.3 respect		narge and	d % lim	it should	l have	

These amendments do not significantly affect any assessments, charts or statements in the relevant RIFE reports.

ear	Site	Location	No. of sampling	Mean	radioact	ivity co	ncentratio	on (dry), B	q kg-1		
			observ- ations	57Co	⁶⁰ Co		⁶⁵ Zn	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹²⁵ S
002	Aldermaston	Reading (Kennet)	4			-					
	Bradwell	Stream draining south	4		~ 1						
	Bradwell	Maldon Waterside	2 2		<3.4 <4.0						
	Capenhurst	Rossmore (4.3 km downstream)	2								
	Cardiff	Canal West of pipeline	2 2								
	Devonport	Lopwell	2		<3.7						
	Dungeness Harwell	Pilot Sands Appleford	2 4		<0.9 <0.6						
	Sellafield	Day's Lock Caerhun	4 2		<0.5 <3.3			<9.6	<7.7	<23	<9.
	Selialield	Caernun	2		<3.3			<9.6	./</td <td><23</td> <td><9.</td>	<23	<9.
03	Aldermaston	Reading (Kennet)	4								
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	< 0.30	<1.1		<1.5				
	Bradwell	Waterside	2		< 2.0						
	Cardiff Derby	Canal River Derwent (downstream)	1		<1.0						
	Devonport	Lopwell	2		<2.5						
04	Aldermaston	Reading (Kennet)	4								
		Aldermaston	4								
	Amersham	Stream draining south Upstream of outfall (Grand Union Canal) 2	4	<6.4	<1.8		<4.1				
	Cardiff Sellafield	Canal Caerhun	2 2		<1.6			<4.5	<2.2	<12	<13
	Selialield	Caemun	2		<u></u>			\4.3	~2.2	<u> </u>	<u></u>
05	Aldermaston Amersham	Reading (Kennet) Upstream of outfall (Grand Union Canal) 2	4	<5.3	<1.6		<3.6				
	Cardiff	Canal	2	\J.3	<1.0		√3.0				
	Harwell	Lydebank Brook Appleford	4		<1.7 <2.5						
	Sellafield	Caerhun	2		<2.6			<8.8	< 6.8	< 20	<20
	Trawsfynydd	Bailey Bridge	2		<8.3						<44
ear	Site	Location	No. of	Mean radioactivity concentration				on (dry), I	3q kg ⁻¹		
			sampling observ-								
			ations	$\frac{^{125}I}{}$	^{131}I	134 <u>Cs</u>	137Cs	144 <u>Ce</u>	¹⁵⁴ Eu_	155Eu_	^{241}A
02	Aldermaston	Reading (Kennet)	4				7.3				<1.
	D 1 11	Stream draining south	4				< 5.1				<1.
	Bradwell	Maldon Waterside	2 2			6.5 3.9	80 59				<4. <1.
	Capenhurst	Rossmore (4.3 km downstream)	2				<4.4				-
	Cardiff	Canal West of pipeline	2 2	<0.80 <3.1			2.4 33				
	Devonport	Lopwell	2	5.1			7.7				
	Dungeness Harwell	Pilot Sands Appleford	2 4				<0.90 <13				<1.
		Day's Lock	4				6.0				
	Sellafield	Caerhun	2			<3.4	430	<25	<7.3	<8.0	75
03	Aldermaston	Reading (Kennet)	4				8.0				<1.
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	<1.0	<550		6.3 <2.1				<2.
	Bradwell	Waterside	2		~550		35				<2.
	Cardiff Derby	Canal River Derwent (downstream)	1 4	<1.4			16				
	Devonport	Lopwell	2				<10				
04	Aldermaston	Reading (Kennet)	4				5.4				<1.
J-T	Muchilasiuil	Aldermaston	4				< 3.9				<1.
	Amersham	Stream draining south Upstream of outfall (Grand Union Canal) 2	4	< 0.80	<1 /		<2.8 10				1.6
	Cardiff	Canal	2	<1.5	\1. 4		11				
	Sellafield	Caerhun	2			<1.5	220	< 5.7	<7.3	<3.1	51
)5	Aldermaston	Reading (Kennet)	4				< 3.9				6.5
	Amersham Cardiff	Upstream of outfall (Grand Union Canal) 2	2	<1.0 <1.8	< 9.1		6.2				
	Harwell	Canal Lydebank Brook	4	∖1.δ			9.1 9.0				
	Sellafield	Appleford Caerhun	4 2			<2.5	<11 230	<9.3	<12	<5.3	59

	Page, Section	Comment
RIFE-10 2004	75, Table 3.7	The entry for Haverigg should read 0.087.
	45, Figure 3.8	The americium-241 discharge data for 2004 was plotted incorrectly, it is shown corrected in Figure 3.12 in RIFE-11.
	87, Table 3.15 151 Table 6.1(a) 154, Table 6.3(a) 166 Table 7.3(a) 173, Table 8.1(a)	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.

Site/location	⁶⁰ Co	106Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	^{234}U	^{235}U	²³⁸ U
Sellafield (Table 3.15)	< 0.43	<1.4	<0.73					
max	0.80	<1.5	< 0.80			16	0.64	15
Aldermaston (Table 6.1(a))								
max						7.8	0.29	7.2
Derby (Table 6.3(a))								
max						27	0.94	23
Cardiff (Table 7.3(a))				< 0.47	7.1			
max				< 0.50	7.7			
Drigg (Table 8.1)								
max						11	0.42	11

223, Table A1.1 The % annual limit for 106 Ru discharge at Sellafield was 7% (not 70%).

246, Table A5.1 Some dose per unit intake values were missing for 1 yr old. These were:

Radionuclide	Dose per unit intake by inhalation						
	using ICRP-60 methodology (Sv Bq ⁻¹)						
Sr-90 [†]	1.2E-07						
Zr-95 [†]	2.1E-08						
Ba-140 [†]	2.6E-08						
Pb-210 [†]	4.0E-06						
Th-228 [†]	1.4E-04						
U-238	9.4E-06						

[†] Energy and dose per unit intake data include the effects of radiations of short-lived daughter products

	Page, Section			Comment									
RIFE-9	82, Table	The fo	The following activity in soil data were reported as being Bq kg										
2003	138 Table		_		-				1 (wet). All				
2000	141, Tabl	()		-	ess stated		p 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24118	(, , ••). 1 211				
	,	()		data ai	ic avera	ges um	css state	ч.					
	151, Tabl	` /											
	157, Tabl	e 8.1(a)											
Site/location		⁶⁰ Co	106Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am		
Sellafield (Table 3.15)		< 0.90	<3.3	<1.2	< 0.40	75	< 0.50				5.9		
,	max	1.6	<4.2	<1.6		89	< 0.60	11	0.54	10	7.7		
Aldermaston (Table 6.1	(a))												
	max							11	0.48	11			
Derby (Table 6.3(a))								47	1.6	40			
	max				<0.40	0.0		47	1.6	40			
Cardiff (Table 7.3(a))	max				< 0.40	8.8 11							
Drigg (Table 8.1)	IIIax					11							
21155 (14010 0.1)													

185, Table 9.12 Some data were incorrect. The amended version of the table is attached.

Location	Sample	No. of	Mean	Mean radioactivity concentration ^a in rainwater and air										
		sampling observ- ations	³ H ⁷	Be	⁹⁰ Sr ^b	¹³⁷ Cs	²¹⁰ Pb	²¹⁰ Po	²²⁸ Th	Gross alpha ^b	Gross beta ^b			
Ceredigion														
Aberporth	Rainwater Air	12 4	<2.4	<1.6 0.0022		<0.053 <0.00000052	0.10 0.00017		*					
Co. Down														
Conlig	Rainwater Air	4 4		<1.5 0.0022		<0.022 <0.00000063	* 0.00015		*					
Dumfries and Gal	loway													
	Eskdalemuir Air	Rainwater 4	4	<2.7 0.0018	1.2	<0.00000043	<0.0098 0.00013	0.094	*	*				
North Yorkshire														
Dishforth	Rainwater Air	4 4		<2.2 0.0016		<0.039 <0.00000055	* 0.00014		*					
Oxfordshire														
Chilton	Rainwater Air	12 13		<1.5 0.0018	<0.00064	<0.032 <0.00000034	0.32 0.00027	< 0.000014	*	0.074	0.17			
Shetland														
Lerwick	Rainwater	4		1.6		< 0.017	*		*					
	Air	4		0.0015		< 0.00000052	0.00010		*					
Suffolk														
Orfordness	Rainwater	4	<2.2	< 2.4		< 0.048	*		5.2					
	Air	4		0.0022		< 0.00000053	0.00020		*					

The concentration of $^{210}\mbox{Po}$ in Cornwall, River Fowey was $<\!\!0.0098$ Bq $l^{\text{-}1}.$ 187, Table 9.14

^{*} Not detected by the method used

a Bq I¹ for rainwater and Bq kg¹ for air
b Annual bulk analysis

Page, S	Section	Comment
± ~50, ~	J C C L I C I I	Committee

188, Table 9.16 A revised version is attached.

Country	Exposure, mSv Man-made radionuclides ^b	Natural radionculides ^c	All radionuclides
England	<0.001	0.028	0.028
Northern Ireland	< 0.001	0.026	0.026
Scotland Wales	<0.001 <0.001	d 0.027	d 0.027

a The maximum dose is selected for each nuclide group from data for individual sampling locations.

Many estimates of dose are based on concentration results at limits of detection.

214, Table A1.2

The data shown for Faslane are a duplication of the data for Rosyth and were included in error.

RIFE-8 2002

59, Table 4.1

Two tritium results were omitted. The data are attached.

Table 4.1.	ctivity in fish from the er afield, 2002	e Irish	
Location	Material	No.of sampling observ- ations	³H
Liverpool Bay	Flounder	2	<25
Mersey estuary	Flounder	2	<25

79, Table 4.14 82 Table 4.17 128, Table 7.1(a) 138, Table 8.2(a) The following activity in soil data were reported as being Bq kg-1 (dry) whilst they should have been reported as Bq kg-1 (wet). All data are averages unless stated.

Site/location	60Co	106Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U
Sellafield (Table 4.14)	< 0.80	<2.3	<1.2	68				
max	1.0	<2.7	<1.4	82				
Drigg (Table 4.17)								
max						6.9	0.30	6.5
Aldermaston (Table 7.1(a))								
max						8.7	0.35	8.3
Cardiff (Table 8.2(a))				< 0.30	6.4			
max					8.1			

102, Figure 6.1

The concentration of caesium-137 in Bradwell sediments was plotted incorrectly in Figure 6.1, it is shown corrected in Figure 5.1 of RIFE-9.

b Including tritium

c Including carbon-14 d Analysis of natural radionuclides was not undertaken

	Page, Sec	ction	Co	omment							
RIFE-1-8 1995-2002					penhurst ne reasses			•		harges of E1.	
			Та	ible E1.	Reassesse from Urer			harges c	f uranium		
			Ye	ar			ginal reporte harge	ed	Reassessed discharge TBq		
			19 ⁹ 19 ⁹ 19 ⁹ 19 ⁹ 19 ⁹	94 95 96 97 98		6.74 2.69 1.11 6.80 6.87	1 10 ⁻⁹ 1 10 ⁻⁹ 1 10 ⁻⁹ 1 10 ⁻⁸ 1 10 ⁻⁷ 1 10 ⁻⁸ 7 10 ⁻⁸ 5 10 ⁻⁸		2.41 10 ⁻⁷ 2.63 10 ⁻⁷ 2.75 10 ⁻⁷ 8.23 10 ⁻⁷ 4.90 10 ⁻⁷ 1.87 10 ⁻⁶ 1.01 10 ⁻⁶		
			200 200 200	01		1.20	10 ⁻⁸ 10 ⁻⁷ 510 ⁻⁷		8.72 10 ⁻⁷ 9.77 10 ⁻⁷ 6.01 10 ⁻⁷		
RIFE-7 2001	71, Table 80, Table 93, Table 122, Tabl 127, Tabl 130, Tabl	4.15(a) 5.2(a) le 7.3 le 8.2(a)	The following activity in soil data were reported as being Bq kg (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). A data are averages unless stated.								
Site/location		⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am	
Sellafield (Table 4.8)	max	<0.80 1.2	<3.1	<1.1		80 97	9.3	0.34	9.1	5.8 6.0	
Springfields (Table 4.1 Harwell (Table 5.2(a))	5(a)) max	<0.40			<0.40	2.9	95	4.6	89		
Featherstone position Featherstone position I Cardiff (Table 8.2(a))					<0.33 <0.40	5.6 6.5	9.5 7.3	0.41 0.34	9.0 7.5		
Derby (Table 9.1)	max				-0.10	0.5	18 30	0.80 1.3	18 29		
	e A1.1	Discharges of Alpha for Hunterston 'A' given as 0.14 TBq shown have been 1.4 10 ⁻⁵ TBq. The % of limit given as 350 should habeen <1.									
	181, Tabl	e A1.2	Dungeness 'A' discharge limit and % of limit for tritium should have been 3 and 23 respectively.								
RIFE-6 2000	31, Section	on 3.5	It was stated that the dose limits do not apply to natural radionuclides. This sentence should be deleted								

	Page, Section	Comment						
	75, Table 4.16 124, Table 9.1	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.						
		Site/location ²³⁴ U ²³⁵ U ²³⁸ U						
		Capenhurst (Table 4.16) max 8.5 0.35 8.4 Derby (Table 9.1) max 24 0.96 23						
	155, Table 12.1	Target date for project 'Tritium and carbon-14 in seafood' should have been March 2003.						
	166, Table A1.1	Discharges of tritium from Devonport (pipeline) given as 0.87 TBq should have been 0.087 TBq.						
	168, Table A1.2	Sellafield Discharge limits of alpha and beta activity should have been 0.00196 and 0.328 TBq. Percentage of limit for alpha and beta activity should have been 4.0 and <1. Discharges of tritium and 14C from Sellafield given as 213 and 2.58 TBq should have been 355 and 2.94 TBq. Relevant percentages given as 15 and 30 should have been 25 and 34.						
RIFE-5 1999	71, Table 4.15(a) 73, Table 4.16 118, Table 9.1	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.						
		Site/location 234U 235U 238U						
		Springfields (Table 4.15(a)) max 180 15 200 Capenhurst (Table 4.16) max 12 0.46 12 Derby (Table 9.1) max 34 1.3 31						
	112, Section 8.2	The second sentence of paragraph three states that "the duck and tide washed pasture pathways gave doses of 0.032 and 0.009 mSv y-1 respectively." The dose due to the duck pathway should read 0.042 mSv y-1. The value for tide washed pasture is correct.						
	123, Table 10.2	The concentration of ¹⁴ C in grass from Billingham was 960 Bq kg ⁻¹ (wet).						
	162, Table A1.2	The Dounreay (Fast Reactor) data were duplicated.						
RIFE-4 1998	70, Table 4.12	The concentrations of total Cs and ¹⁴⁴ Ce in ovine muscle (max) were 0.61 and <1.8 Bq kg ⁻¹ (wet) respectively. No value for ¹⁵⁵ Eu is available.						

	Page, Section	Comment					
	75, Table 4.15(a) 77, Table 4.16 116, Table 9.1	The following activity in soil data were reported as being Bq kg (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). Al data are averages unless stated.					
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Springfields (Table 4.15(a)) Capenhurst (Table 4.16) Derby (Table 9.1)	72 7.9 31	3.0 0.30 0.93	68 7.4 26		
	96, Table 6.4(a)	The concentration of <1.0 Bq kg ⁻¹ (dry). N					
	125, Section 11.1	Last but one paragra	ph. The estin	nated dose wa	s 0.094 mSv.		
	131, Section 11.8	Last paragraph, first	sentence. Re	place 1997 w	ith 1998.		
RIFE-3 1997	19, Table 1.1	Replace beta, tritium and 60Co Devonport (sewer) discharges with 1.97 10 ⁻⁶ , 2.22 10 ⁻⁶ , 5.60 10 ⁻⁷ TBq respectively. Replace alpha and beta limit and percentage Greenwich with 4.44 10 ⁻³ TBq and <1 respectively.					
	21, Table 1.2	Replace tritium Winfrith limit with 5 TBq.					
	38, Section 3.6.5	First paragraph. Reference to factor of 0.85 millisievert per milligray should be ICRP (1996b).					
	70, Table 4.10 72, Table 4.12 81, Table 4.16 121, Table 9.1	The following activi (dry) whilst they sho data are averages un	uld have bee				
	121, 14016 9.1	Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Drigg (Table 4.10) Ravenglass (Table 4.12)	9.9 18	0.37 0.60	9.5 16		
		Springfields (Table 4.12) Capenhurst (Table 4.16) Derby (Table 9.1)	31 9.5 27	1.5 0.40 0.97	30 9.5 24		
	90, Section 6.3	Springfields (Table 4.12) Capenhurst (Table 4.16)	9.5 27	0.40 0.97	9.5		
	90, Section 6.3 161, Appendix 4	Springfields (Table 4.12) Capenhurst (Table 4.16) Derby (Table 9.1) The maximum dose	9.5 27 due to gaseou	0.40 0.97 us disposals w	9.5 24 vas received by		

Page, Section	Comment			
58, Table 2	Replace ³⁵ S Oldbury limit of 0.8 TBq with 0.75 TBq. Replace ⁴¹ Ar Trawsfynydd limit of 350 TBq with 3500 TBq.			
85, Table 16	The following activit	-		0 1 0
87, Table 18 91, Table 20(a) 95, Table 21	(dry) whilst they show data are averages unle		n reported as I	Bq kg ⁻¹ (wet). All
,	` • • • • • • • • • • • • • • • • • • •		en reported as I	Bq kg ⁻¹ (wet). All
91, Table 20(a) 95, Table 21	data are averages unle	ess stated.	²³⁵ U	238U
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16)	ess stated. 234U 8.3	235U 0.28	²³⁸ U 7.4
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16) Ravenglass (Table 18)	ess stated.	²³⁵ U	238U
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16)	ess stated. 234U 8.3 16	²³⁵ U ————————————————————————————————————	²³⁸ U 7.4 15

Table 47 This was omitted in error. The data are attached.

Sampling location	Material	Material No of Mean radioactivity concentration (dry)*, Bq kg¹ samples								
	N2 6		³ H	¹⁴ C	⁹⁰ Sr	¹²⁵ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	239+240 Pu
Beddingham Lewes, East Sussex	Grass	4	<40 ±18	130 ±28	1.8 ±0.1	<0.19	<0.61	<0.54 ±0.30	<0.00099 ±0.00037	0.0067 ±0.0012
Cilgwyn Quarry, Gwynedd	"	4	<30	360 ±55	3.0 ±0.2	<063	< 0.69	<5.2 ±0.9	<0.0095	0.018 ±0.005
Lyndown, Devon	"	4	<28	150 ±30	2.4 ±0.2	<1.3 ±0.2	< 0.60	<0.62 ±0.17	<0.0010	<0.0024 ±0.0009
Witton, Cheshire	"	4	<38	130 ±33	0.76 ±0.12	<1.1 ±0.3	< 0.59	< 0.63	< 0.0013	0.0021 ±0.0016

^{*} Results are available for other artificial nuclides detectable by gamma spectrometry All such results are less than the limit of detection

99, Table 33(a)

38, Section 16.2	Last but one sentence, replace 1994 with 1995.					
39, Section 16.4	First sentence, 2nd paragraph, replace 1994 with 1995.					
45, Table 1	Replace ²⁴¹ Am Sellafield (sea pipelines) limit of 1.3 TBq with 0.3 TBq. Replace ⁶⁰ Co Harwell (pipeline) percentage of 1.5 with 6.9.					
74, Table 16 99, Table 33(a)	(dry) whilst they sh	ould have be	•			
	Site/location	²¹⁰ Po	²³⁸ Pu	239+240 Pu		
	Sellafield (Table 16)	64	0.0001	0.36		
	max		0.016	0.56		
	39, Section 16.4 45, Table 1	39, Section 16.4 First sentence, 2nd Replace ²⁴¹ Am Sell 0.3 TBq. Replace ⁶⁰ Co Harw 74, Table 16 99, Table 33(a) The following active (dry) whilst they she data are averages under the self-distribution (Table 16) Aldermaston (Table 33(a))	39, Section 16.4 First sentence, 2nd paragraph, results and the sentence, 2nd paragraph, results and 241 Am Sellafield (sea pir 0.3 TBq. Replace 60 Co Harwell (pipeline) 74, Table 16 99, Table 33(a) The following activity in soil day (dry) whilst they should have be data are averages unless stated. Site/location Sellafield (Table 16) Aldermaston (Table 33(a))	39, Section 16.4 First sentence, 2nd paragraph, replace 1994 with 45, Table 1 Replace ²⁴¹ Am Sellafield (sea pipelines) limit of 0.3 TBq. Replace ⁶⁰ Co Harwell (pipeline) percentage of 74, Table 16 99, Table 33(a) The following activity in soil data were reported (dry) whilst they should have been reported as data are averages unless stated. Site/location 210Po 228Pu 228Pu 289Iafield (Table 16) 64 Aldermaston (Table 33(a)) 0.0091		

12±0.15 Bq kg⁻¹ (dry)

The concentration of ${}^{137}\mathrm{Cs}$ in clay at Outfall (Pangbourne) was

Page, Section	Comment
133, Appendix 3	The average consumption rates of nuts and offal by 10 year old children were 1.5 kg y ⁻¹ . The consumption of whelks at Sellafield by group E (Whitehaven commercial) was 11 kg y ⁻¹ .
138, Appendix 6	The values of t_f and t_s were 0. The transfer factors for beef offal (241 Pu) and lamb (241 Pu) were 2 10^{-2} and 4 10^{-4} respectively.