Methods to

 assess the price of diets: A rapid literature review

Prepared for Food Standards Scotland by:
Vitri Darlene, David McBey, Ben McCormick. Jennie Macdiarmid
Rowett Institute, University of Aberdeen.

Background

The price ${ }^{1}$ of food has been identified as one of the main determinants of dietary choices (1), however work examining the methods used to estimate the price of diets is scarce. Little research has been done in the UK and Scottish context compared to other high-income countries such as the USA and Australia (2), where several studies have demonstrated that the price of healthy and sustainable diets are higher than current diets (3-6). Being able to assess the price of diets is critical to ensure nutritionally adequate and environmentally friendly diets are affordable, especially for low-income households with smaller food budgets. Such households have to sometimes prioritise their spending to cheaper products to get enough food and these are often less nutritious than, for example, fresh fruits and vegetables that tend to be more expensive (7). If the Scottish diet is to become better for human health and the environment, understanding its price, and how this is calculated, is essential. Several approaches have been used to calculate the price of diets that each have implicit, non-trivial, and practical decisions about data collection that affect estimated prices. Decisions can include the outlet(s) that foods are bought from, selection of food items, whether to use the lowest, mean, or median price for an item, usual or promotional prices, or whether a product is branded or not. Often the aim of the study determines many of these decisions such as taking the lowest price to determine healthy diets for low-income groups, but the variation in approaches can make it difficult to make comparisons across studies.

To calculate diet prices in a robust, reliable, and systematic way, it is important to understand more about the methods being used and the implications thereof. Hence, we present a rapid review of the methods used to estimate the price of diets, focusing on methods used in high-income countries.

[^0]
Methods

A rapid review of the published literature was conducted to identify studies that measured the price of diets.

Search strategy

The search was limited to papers published between 2020-23 (inclusive) to build on a systematic review of pricing methodologies by Russell et al. that included studies in high-oncome countries published between 2016 and 2021 (2). The Russell et al. review surveyed tools (e.g., food baskets, electronic point of purchase data [ePoP]) that have been used to gather diet prices, but we specifically focus on the protocols used to select and price food items, and the steps made to operationalise these approaches. For example, implementing a given approach may or may not include the use of online prices, reflective of the recent increase in online food shopping, but this may have implications for the practicalities and generalisability of gathering price data (8).

The Web of Science database was searched using the following terms: 'food price*'OR 'food cost' OR 'food affordability' used in the review by Russell et al. (2), omitting the 'food promotion*' term they employed as it was deemed outside the scope of this review. In addition, a Google search identified recently published grey literature from relevant bodies reporting on the price of foods. Our review was completed in May 2023.

Screening of abstracts and titles were completed using the following the following inclusion criteria:

- Studies conducted in high-income countries.
- Studies with a description of methods of measuring prices of diets.
- Studies using quantitative assessment methods.

Data extraction from the literature and reports

The following data were extracted for each study: study objectives, an overview of the method used for assessing the price of diet (e.g., food basket), the number and type of food stores from which data were collected, sources of pricing data (e.g., specific stores or consumer panel data), brand(s) of items included, package sizes of the items, how food prices were selected or calculated, what decisions were made about food substitutes if products were unavailable in a given store, data collection period, type of diet considered, duration over which a diet was recorded, food groups or category, and demographics of the sample (e.g. household composition). Full details of the extracted data are in Appendix 1.

Results

From the Web of Science database, 2,113 publications were identified, including 1,800 articles and 258 reviews and 55 book chapters. A further 4 reports were identified from the Google search and added to the screening list. After screening, 27 publications were retained. The selected studies consist of 22 journal articles, 3 reports and 2 reviews. A recent study by Nourish Scotland (9) published in 2023 was included due to its regional and methodological relevance. Review articles were excluded as they did not contain the level of methodological detail from the papers required for estimating the price of diets, leaving 25 sources (Figure 1).

Figure 1: Flowchart of review process
Studies tend to fall into two main methodologies: (i) the use of a typical or ideal food basket that describes a collection of food items that characterise a diet (defined according to the study purpose), or (ii) the use of observed dietary intake data linked to electronic point-of-purchase sale data (ePOP) to characterise the price of what a population currently eats or a hypothetical healthy diet. Food baskets were the most widely used approach, as evidenced by our search (17/25 studies, 68\%) and the Russell et al. review (2). The papers using food basket studies were, however, often

Methods to assess the price of diets

conducted by the same research groups repeating their standardised methods in different settings and locations.

The practical decision points needed to operationalise collection of price data for both methods are non-trivial and the detail is often missing or incomplete from the description of methods in studies, especially on the selection of food items. We have collated these steps from across all studies, as outlined in Figure 2.

Methods to assess the price of diets

Figure 2: Flowchart depicting the steps in assessing the price of diets. The two broad approaches (food baskets, yellow and electronic point of purchase data (ePoP) data, purple) are shown with common decisions shown in grey.

Food baskets

The use of a 'basket' of food is a long-established technique to measure the price of diets and/or affordability (8). The premise is to describe a collection of food and drink items that characterise an overall diet defined according to some study-specific criteria. There is no one single procedure to determine which foods are included in a basket, and we found many studies don't provide specific detail about why specified food items are included ($4,7,10-15$). Food baskets comprise many different combinations of food, typically determined by the aim of the study, such as foods that are commonly consumed (e.g., observed in the National Diet and Nutrition Survey [NDNS]), based on expert judgement to meet criteria of healthy, affordable, or match an idealised diet ($10,11,16-21$). Alternatively, the basket is defined around foods that are nutritionally adequate and socially acceptable (14,22-25), or a combination of all these factors (9). Food baskets have also been modelled diet scenarios such as Mediterranean, vegan and vegetarian diets (4) and the EAT Lancet diet (a reference diet for environmental sustainability) (11), or on specific food groups such as vegetable and fruits alone (7). Some countries or organisations use a standardised food basket or everyday household/food items to monitor trends in pricing of standard diets (e.g. the Australian Standardised Affordability and Pricing (ASAP), the American Thrifty Food Plan, the Canadian national nutritious food basket, the UK Consumer Price Index) and these have been used to compare the price of diets at regional as well as at a national level $(19,26,27)$. Such diets are kept consistent for comparison over time, but are also subject to changes to reflect societal trends (28). A detailed example of a food basket, as used by Goulding et al. (11), is included as Appendix 2 and an example of the rationale for including food items for a basket in a Scottish context (14) is provided in Appendix 3.

Having identified the foods in a basket, the quantity of each food basket is tailored (e.g., by calorie requirements) to a given household composition, for example, the number and age of people in a household, and the period that the food basket should sustain them for (e.g., enough food for one week) $(9,15,18,25,26,29,30)$. Portion sizes are calculated to meet the requirements of the target diet. This is an important
consideration as economies of scale may mean that the price of food for a one- or two-person household may in fact be higher per person that those estimated using a four-person household, which tends to be a more common denominator. In general, these studies did not consider the knowledge and equipment required to cook from scratch, which typically requires households to have some basic store cupboard items that are often not included in the cost, the time taken to cook, transport costs, or the need for cooking facilities and utensils. Some studies factored in food eaten out of the home, but this was not universal.

The spatial area(s) in which food prices are collected, and therefore generalisable, tended to be explicitly defined and selected based on criteria such as level of deprivation ($14,16-20,27,30,31$) or specific geographic areas $(26,29)$. The area sampled will depend on the specific research question, for example a study concerned with the price of food to those on the lowest incomes will likely want to collect data in lower socioeconomic score areas. However, determining the study population has consequence for both data collection and extrapolation.

Most studies using a food basket collected price information from supermarkets instore and/or online from in-person surveillance or surveys (4,5,9,11,15-20,25-27,29-32). Food prices tended to be collected from a range of food retailers, including major or chain supermarkets, budget supermarkets, convenience stores or other food retail outlets (e.g., liquor stores, take-aways). The identification and selection of these stores, however, was study dependent. The eight studies (seven in Australia, one in New Zealand) adopting the ASAP (33) protocol used Google Maps to identify all food outlets within their defined study area, and pick one example from each retailer (e.g., one representative store from each supermarket chain, one exemplar from each of the fast-food outlets), while other studies chose only supermarkets and specifically sought retailers for those that covered $\geq 65 \%$ of the domestic market (29), or chose supermarkets with no stated rationale (15). The identification and selection of stores has critical implications for reproducibility and interpretation given that individual chains may or not have uniform coverage within a given population.

Recent studies have collected supermarket price data exclusively online $(15,25)$ or using a combination of in-store and online prices $(9,30)$, which coincides with recent growth in online grocery shopping (34). Zorbas et al. (31) compared the prices collected in-store and online and found that for supermarkets there was 94.2% agreement for price and 87.5% agreement for fast-food outlets. This suggests that where online sources are available, they are comparable to data collected instore and this may be a quick and effective method to collect real-time data. However, many smaller retailers and food outlets do not have online purchasing and therefore this can constrain the range of prices available within a population. Table 2 summarises studies using food baskets and supermarket price (in-store visits, online or both).

A challenge of pricing food baskets is the variability in prices of food items. The price can vary by the place it is purchased (i.e., the store type and location), but also the size of items (e.g. 0.5 litre versus 2 litre carton), whether branded or not, which 'tier' of supermarket branding such as the lowest price, mid-range and high end product) (e.g., Asda's 'Extra Special' vs. 'Just Essential'), and if it is on promotion. How studies deal with these questions will often be study specific, but it is important that a detailed protocol is developed and described prior to data collection to standardise and simplify the collection of pricing data. Some food basket studies contained a detailed description of how prices were collected when visiting supermarkets or other stores ($9,16-21,27,30,32,33$), including the size and/or brand of food items, and which price in the store to record (e.g., the non-discounted or 'usual' price, lowest price), and how to identify substitutions if a given food item in the food basket was not available on the day of data collection.

When multiple prices are found for a given item, they need to be summarised in some fashion. For example, studies exploring how to achieve an affordable basket for low income groups focus on the lowest available price for an item ($1,4,5,11,26$). The Food Foundation's basket tracker report two scenarios of food basket price: the usual price (i.e. when items are not discounted) and the price available to consumers using a membership card (Tesco's Clubcard), which aims to compare prices with or without promotion. Weekly data to October 2023 suggests a small (generally less than $£ 1$ on
a $£ 40-50$ basket) difference in price when looking at Clubcard vs. non-Clubcard baskets (25) A study of healthy versus current diets in New Zealand found that, although price promotions tend to be more frequently applied to unhealthy foods, the impact on overall diet pricing was minimal (31).

An example of a comprehensive methodology and detailed protocol for collection and collation of price data for a food basket is the ASAP protocol (33), which was developed in consultation with stakeholders from academia, governmental bodies, and NGOs. As well as outlining the geographical boundaries and stores that should form the sampling frame, it also provided step-by-step guidance for data collectors on which foods should be included, their sizes, prices to record, and what should be done in the event of missing items. Their guidance and data collection forms are included as Appendix 4.

A more recent example of an especially thorough and detailed methodology was developed by Nourish Scotland (9). Community advisors (members of the community) were enlisted from various stakeholder groups to co-create four fictitious families and build realistic weekly shopping lists, based on lived experiences, that would be "a good fit for their lives, enjoyable, and healthy 'enough'". Their aim was to create not just a healthy diet (which can be subjective), but one that might realistically be followed given constraints of time, kitchen equipment, tastes etc. These shopping baskets (i.e., lists) included food bought from a supermarket, with prices obtained from Tesco online, and takeaway foods such as pizza or local fish and chip shops. Decisions such as which branded (or unbranded) items, which takeaways to include, package sizes and form (e.g., fresh, frozen, tinned) were made in consultations between community advisors, public health professionals and the project steering group. Clear instructions on swaps, if the shopping list items weren't available were provided: the item with the closest pack size (to avoid waste and account for limited cupboard space in homes) or when the brand was not specified the second cheapest item was selected.

Methods to assess the price of diets

Table 2. Summary of studies measuring the price of a food basket using food store price data (in store, online data or both).

(11)	Australi a	Online	For each of the seven states in Australia, three urban areas with different socioeconomic index were chosen. Areas were selected by ranking the postcode and the median ranked were selected.	Online price data from major/chains supermarket (Coles), using the respective postcode of each survey area. If Coles was not present in that survey area/postcode, the nearest comparable retailer was chosen.	Current diet based on a previousl y develope d food basket. Healthy and sustainab le diet construct ed from PHD reference diet, based on EATLancet.	Any brand	Yes	Lowest price	No	Similar item. If similar item is not available in that store then price taken from closest store.

(15)	Estonia	Online	Not stated	Three major/chain supermarket websites (i.e. Maxima, Ecoop, Selver).	Three dietary baskets built based on data from Estonian national dietary guideline s: the lowest price diet, the nutrition ally adequate diet, the healthpromotin g diet.	Not stated	Not stated	Median price for each food type	Not stated	Not stated
(4)	Germa ny	In-store	All data collected in Berlin, with predominantly average-to-low income households	Stores in lowincome area in Berlin, consist of major/chain supermarket and budget	Baskets designed for seven dietary patterns, with	Branded	Not stated	Lowest price	No	Not stated

				supermarket in Berlin (i.e. ALDI Nord, Edeka, Kaufland, LIDL, Netto, Netto plus, Norma, Penny, Spar, Real, REWE and Metro).	meals variations for each one. Dietary patterns varied from highly processe d omnivoro us to lowfat lowprotein vegan.					
(26)	USA	In-store	Survey area was defined as towns within each jurisdiction. 1-6 towns for each jurisdiction were included depending on the number of food retail stores available.	Stores ($\mathrm{n}=74$) consists of major and budget supermarkets and convenience stores, the number of stores in each area would depend on the availability of the stores. Convenience stores were included if	USDA Communi ty Food Assessme nt Toolkit food list	Unbrand ed/ generic or store brand	Yes	Lowest price	No	Similar item and if not available then price left blank.

Methods to assess the price of diets

				supermarkets were unavailable.						
(29)	Portug al	In-store and online	Five supermarket chains in the Lisbon Metropolitan Area.	Supermarket chains that account for 65\% of total Portuguese market share.	3591 baskets built using consumpt ion data from Portugue se National Food, Nutrition, and Physical Activity Survey.	Not stated	Yes	Lowest price	No	Not stated
(10)	Australi a	In-store	Five suburbs representing low, medium and high socioeconomic areas.	Chain supermarket, butchers, and local greengrocers in each area.	The Illawara Healthy Food Basket, containin g 57 items: 10 breads and	Branded	Yes	Usual price	Not stated	Closest alternativ e, details not stated.

Methods to assess the price of diets

					cereals, 3 dairy foods, 15 vegetable s, 6 fruits, 10 meats, fish, poultry, eggs, nuts and 13 extra foods.					
(12)	USA	In-store and online	768 individuals from three counties differing in sociodemographi c composition.	Safeway stores	FFQ data was used to measure consumpt ion, and each item's price was collected.	Not stated	Yes	Lowest price	Not stated	Closest alternativ e, details not stated
(25)	UK	Online	Supermarket online prices	Tesco website (collected weekly)	Single Woman's and single man's baskets based on	Branded	Yes	Usual price and discount ed price (Clubcar d price)	Yes, for Tesco Clubcard price but not multibuy offers/me	If item not available that week, price of previous

					the Minimum Income Standard Basket.				al deal/ bundle.	week is used.
(9)	Scotlan d	Online and instore (takea ways)	Supermarket online prices and takeaway outlets	Tesco website and takeaway outlets	Four fictitious families created, and for each a basket reflecting a diet that is " A good fit for their lives, enjoyable , healthy 'enough'"	Both branded and unbrande d	Yes	Price on Tesco website that week	Not used, and Tesco Clubcard prices not used	Closest in size, second cheapest available.

Electronic point of purchase data

A less common method for assessing the price of diets is to use existing ePoP datasets $(3,6,7,13,35,36)$ such as those available from Kantar World Panel (KWP), Good for Knowledge (GfK), USDA's Fruit and Vegetable Price Data, or Nielsen. These datasets, often longitudinal or regularly collected data, are constructed from large samples of households who recorded purchases (e.g. using a barcode scanner) over some period of time (e.g., weekly or annually). Price information is included for products that were available and purchased by a given population and this can then be linked to consumption data (e.g., the NDNS) to define the diet characteristics. This approach can be used to approximate the price of observed rather than idealised or hypothetical diets. The diets can be more precisely categorised to sub-groups, e.g., in accordance with the Dietary Approaches to Stop Hypertension (DASH) diet, according to purpose or to reflect sub-populations of interest.

A UK-based example of this method was conducted by Jones et al. (36). The study matched all foods consumed (as per NDNS data) with products in KWP data, assuming a 'one-to-many' approach (i.e., generic foods in the NDNS data could match multiple products in the KWP, each with different prices) that captured different permutations in retailer and therefore price. Within the KWP dataset, the prices used were already normalised prices across brands and package sizes by Kantar to give a generalised price. The median price for each product was used within the dietary price calculation. As Jones et al. (36) describes, matching products is a subjective exercise, and so team-based decisions were used to ensure consensus. In their study, the final step was to score the observed diets against national dietary guidelines, and in accordance with the DASH diet. For the latter, foods were categorised as belonging to one of the five food groups people were encouraged to eat and three discouraged food groups and scored accordingly.

As noted in the example above, the price data provided may already be generalised or estimated. This simplifies the collection of data, but also accepts the assumptions of the data provider, especially syndicated providers that have variable coverage of the consumer population, retailers or brands. As with any empirical data, future diets

Methods to assess the price of diets

may not be represented in the current data. Although these methods can give a robust snapshot of what people currently do, they may be less appropriate to extrapolating to the price of a hypothetical diet.

Summaries of studies using ePoP data are presented in Table 3.

Table 3. Summary studies using electronic point of purchase (ePoP) data

Studies	Country of Study	Price data sources	Dietary data sources	Brief	Brand	Size of item consider ed	Food price selection	Promoti ons/sale s	Food substitu te
$\begin{aligned} & (13,35,37 \\ & \text {) } \end{aligned}$	Belgium	GfK	Food Consumer Survey	FCS (2 days dietary recall). GfK dataset (>2000 type of foods) obtained from scanned weekly purchases of 5,000 households. Datasets were linked to produce price.	Branded and unbranded	Yes	Mean price of every sub-type of foods (e.g fresh/froze n/ canned, full fat/semiskimmed/ skimmed).	Include promoti on prices	Missing price was substitu ted with price of most nutrition ally similar food
(6)	Canada	Nielsen	Three online 24hr dietary recalls (n = 1849)	Mean price for each food group was calculated. The dietary recall data was then used, and price per kg of food consumed was matched to food group price data.	Branded and unbranded	Yes	Mean price of food group	Not stated	N/A

(38)	UK	UK supermar kets price comparis on website	2008-2011 National Diet and Nutrition Survey (NDNS)	Food matched at the sub-food group level in NDNS. The 1 or 2 most frequently consumed foods in each sub-group were selected as indicators of that group, with 204 foods matched to prices in the food price database.	Not stated	Yes	Mean	Not stated	Items with missing prices or sizes were remove d from analysis
(7)	USA	USDA Fruit and Vegetable s Prices data	2015-2016 National Health and Nutrition Examination Study.	3000 simulated baskets of fruit and vegetables (based on dietary recommendations). These simulations contained mixes of differently priced and number of items.	N/A	Yes	Mean price for each item. Items standardise d in to price-percup equivalent, then placed in quintile ranges.	Not stated	N/A
(39)	USA	USDA Center for Nutrition Policy and Promotio	2005-2016 National Health and Nutrition Examination Survey	Food price data matched to USDA CNPP at the ingredient level. Consumer Price Index was used to inflate	Not stated	Yes	Mean price	Not stated	N/A

Methods to assess the price of diets

		n (SCNPP) Food Prices Database (2001- 2002)		food prices from 2001-2002 levels.					
(5)	Netherlan ds	Dutch food price database	Dutch National Food Consumption Survey	Using the DIETCOST algorithm, with a 4 person reference household, shopping baskets were created for both existing and healthy diets. Average prices of the simulated current vs. healthy diets were then compared.	Not stated	Not stated	Lowest price	Not stated	Not stated

Conclusions

Using a food basket is a well-established method to estimate the price of a diet and was used by majority of the papers reviewed. Broadly they comprise a pre-selected list of foods tailored to a specific diet and commonly consumed foods, generally derived from surveys or population-level consumption datasets. This method allows assessment of multiple types of baskets or diets, exploration around food affordability and accessibility, and monitoring trends when the same items are included.

The price of food is still largely collected from in-store surveys of retailers, however online data collection is increasingly viable and used. This may be a more costeffective alternative to collecting in-store data and the pricing in-store and online are comparable, but a major limitation is that not all smaller retailers have online purchasing facilities, including the popular discounters such as Lidl and Aldi. Hence, it does tend to restrict pricing to major supermarkets that may not be accessible to the study population. Collecting price data from stores is, however, resource intensive and was often associated with geographically restricted studies, for example, those looking at a defined population in which all stores (or a representative sample) could be surveyed. Nationally representative use of in-store data (e.g., the food contributing to the consumer prices index), requires greater consideration of how to balance practical issues of collecting data with representation of different retailers.

The other main method employed for collecting dietary prices is the use of preexisting sales data. ePoP data can provide detailed information on what consumers currently purchase and this can be linked to consumption datasets to give a comprehensive understanding of the current price of diets, and the impact of changes to alternative dietary patterns. These data often collect information from the same households or individuals over time, giving longitudinal assessments of purchasing patterns and temporal fluctuations in prices. However, there are implicit assumptions about the coverage of retailers (e.g., limited to one store's loyalty

Methods to assess the price of diets

scheme or all shops visited by panel members) and pre-processing (e.g., summary aggregation of pricing information across brands) of these purchase data that vary between the data providers.

Regardless of where the data are collected, decisions need to be made for the reproducible and efficient collection of price data. The challenges to assessing the price of diets predominantly arise from the selection of each food item. Practically, these extend to how foods are sold as products and therefore whether they are branded or unbranded, variation in the package size, whether it is on promotion or not and what to do about either selecting alternatives (food basket) or matching foods and products (ePoP data), as shown in Figure 2. Examples of good practice, for example, the ASAP protocol, exist and clearly articulate the step-by-step identification of price data.

Last, prices must be aggregated into a summary statistic. The choice of summary function depends on the purpose of the study, for example if the aim is to choose the cheapest versus an average diet. Any summary function, for example, the mean, median or lowest price available, will mask the variability encountered by consumers but this is unavoidable. Again, the Australian ASAP methodology (Appendix 4) provides an example of a robust protocol.

In addition to the price of the food, there are several other costs that could be considered to assess the full cost of a diet, which include the cost of fuel to cook and prepare food, costs associated with travelling to/from the food retailer, and food wastage.

Overall, this review highlights the decisions that are needed at the outset to robustly and reproducibly price diets and the implications that follow for interpreting that price.

Acknowledgement

This work was funded by the Scottish Government's Rural and Environment Science and Analytical Services Division as part of the Strategic Research Programme 20222027 (project RI-B5-9 and Underpinning National Capacity Support for Policy).

References

1. FAO. Cost and affordability of healthy diets across and within countries. Background paper for The State of Food Security and Nutrition in the World 2020 [Internet]. Rome, Italy: Food and Agriculture Organization of the United Nations; 2020. Report No.: 9. Available from:
https://www.fao.org/3/cb2431en/cb2431en.pdf
2. Russell C, Whelan J, Love P. Assessing the Cost of Healthy and Unhealthy Diets: A Systematic Review of Methods. Curr Nutr Rep 2022114 2022;11:600-17.
3. Jones NRV, Conklin AI, Suhrcke M, Monsivais P. The Growing Price Gap between More and Less Healthy Foods: Analysis of a Novel Longitudinal UK Dataset. PLOS ONE 2014;9:e109343-e109343.
4. Kabisch S, Wenschuh S, Buccellato P, Spranger J, Pfeiffer AFH. Affordability of different isocaloric healthy diets in germany-an assessment of food prices for seven distinct food patterns. Nutrients 2021;13:3037-3037.
5. Hoenink JC, Waterlander W, Vandevijvere S, Beulens JWJ, Mackenbach JD. The cost of healthy versus current diets in the Netherlands for households with a low, middle and high education. SSM - Popul Health 2022;20:101296-101296.
6. Rochefort G, Brassard D, Paquette MC, Robitaille J, Lemieux S, Provencher V, Lamarche B. Adhering to Canada's Food Guide Recommendations on Healthy Food Choices Increases the Daily Diet Cost: Insights from the PREDISE Study. Nutrients 2022;14:3818-3818.
7. Stewart H, Hyman J, Dong D, Carlson A. The more that households prioritise healthy eating, the better they can afford to consume a sufficient quantity and variety of fruits and vegetables. Public Health Nutr 2021;24:1841-50.
8. Furey S. Food promotions and the cost of a healthy diet. Proc Nutr Soc 2022;81:126-33.
9. Nourish Scotland. Our Right to Food: Affording to eat well in a Good Food Nation. Methods and approach [Internet]. Edinburgh, UK: Nourish Scotland; 2023. Available from: https://www.nourishscotland.org/wp-content/uploads/2023/01/ORTF-Methods-Report.pdf
10. Walton K, do Rosario V, Kucherik M, Frean P, Richardson K, Turner M, Mahoney J, Charlton K. Identifying trends over time in food affordability: The Illawarra Healthy Food Basket survey, 2011-2019. Health Promot J Austr 2022;33:33645.
11. Goulding T, Lindberg R, Russell CG. The affordability of a healthy and sustainable diet: An Australian case study. Nutr J 2020;19:1-12.
12. Rose CM, Gupta S, Buszkiewicz J, Ko LK, Mou J, Cook A, Moudon AV, Aggarwal A, Drewnowski A. Small increments in diet cost can improve compliance with the Dietary Guidelines for Americans. Soc Sci Med 2020;266:113359-113359.
13. Vandevijvere S, Seck M, Pedroni C, De Ridder K, Castetbon K. Food cost and adherence to guidelines for healthy diets: evidence from Belgium. Eur J Clin Nutr 2020757 2020;75:1142-51.
14. Dawson J, Marshall D, Taylor M, Cummins S, Sparks L, Anderson AS. Accessing healthy food: Availability and price of a healthy food basket in Scotland. J Mark Manag 2008;24:893-913.
15. Lauk J, Nurk E, Robertson A, Parlesak A. Culturally Optimised Nutritionally Adequate Food Baskets for Dietary Guidelines for Minimum Wage Estonian Families. Nutrients 2020;12:2613-2613.
16. Lewis M, McNaughton SA, Rychetnik L, Chatfield MD, Lee AJ. Dietary intake, cost and affordability by socioeconomic group in Australia. Int J Environ Res Public Health 2021;18:13315-13315.
17. Lewis M, McNaughton SA, Rychetnik L, Lee AJ. Cost and affordability of healthy, equitable and sustainable diets in low socioeconomic groups in australia. Nutrients 2021;13:2900-2900.
18. Zorbas C, Brooks R, Bennett R, Lee A, Marshall J, Naughton S, Lewis M, Peeters A, Backholer K. Costing recommended (healthy) and current (unhealthy) diets in urban and inner regional areas of Australia using remote price collection methods. Public Health Nutr 2022;25:528-37.
19. Lee AJ, Patay D, Summons S, Lewis M, Herron LM, Nona F, Canuto C, Ferguson M , Twist A. Cost and affordability of healthy, equitable and more sustainable diets in the Torres Strait Islands. Aust N Z J Public Health 2022;46:340-5.
20. Lee AJ, Kane S, Herron LM, Matsuyama M, Lewis M. A tale of two cities: The cost, price-differential and affordability of current and healthy diets in Sydney and Canberra, Australia. Int J Behav Nutr Phys Act 2020;17:1-13.
21. Lewis M, McNaughton SA, Rychetnik L, Lee AJ. A systematic scoping review of the habitual dietary costs in low socioeconomic groups compared to high socioeconomic groups in Australia. Nutr J 2020;19:1-12.
22. safefood. Cost of a healthy food basket In Northern Ireland [Internet]. Little Island, Ireland: safefood; 2020. Available from:
https://www.safefood.net/research-reports/healthy-basket-ni
23. safefood. Cost of a healthy food basket in Ireland 2020 [Internet]. Little Island, Ireland: safefood; 2020. Available from:
https://www.safefood.net/Professional/Research/Research-Reports/What-is-the-cost-of-a-healthy-food-basket-in-Irela
24. Anderson AS, Dewar J, Marshall D, Cummins S, Taylor M, Dawson J, Sparks L. The development of a healthy eating indicator shopping basket tool (HEISB) for use in food access studies-identification of key food items. Public Health Nutr 2007;10:1440-7.
25. The Food Foundation. Food Prices Tracking [Internet]. 2023. Available from: https://foodfoundation.org.uk/initiatives/food-pricestracking\#/undefined/FAQs
26. Greenberg JA, Luick B, Alfred JM, Barber LR, Bersamin A, Coleman P, Esquivel M, Fleming T, Leon Guerrero RT, Hollyer J, et al. The Affordability of a Thrifty Food Plan-based Market Basket in the United States-affiliated Pacific Region. Hawaii J Health Soc Welf 2020;79:217-217.
27. Lee A, Patay D, Herron LM, Parnell Harrison E, Lewis M. Affordability of current, and healthy, more equitable, sustainable diets by area of socioeconomic disadvantage and remoteness in Queensland: insights into food choice. Int J Equity Health 2021;20:1-17.
28. O'Neill R, Ralph J, A. Smith P. What's in the Basket? Inflation: History and Measurement. [Internet] Cham, Switzerland: Springer International Publishing; 2017 [cited 2023 Jul 24]. p. 159-71. Available from:
http://link.springer.com/10.1007/978-3-319-64125-6_7
29. Alves RM, Lopes CMM, Rodrigues SSP, Perelman J. Adhering to a Mediterranean diet in a Mediterranean country: an excess cost for families? Br J Nutr 2022;128:1393-400.
30. Lee AJ, Patay D, Herron LM, Tan RC, Nicoll E, Fredericks B, Lewis M. Affordability of heathy, equitable and more sustainable diets in low-income households in Brisbane before and during the COVID-19 pandemic. Nutrients 2021;13:4386-4386.
31. Zorbas C, Lee A, Peeters A, Lewis M, Landrigan T, Backholer K. Streamlined data-gathering techniques to estimate the price and affordability of healthy and unhealthy diets under different pricing scenarios. Public Health Nutr 2021;24:1-11.
32. Lee AJ, Kane S, Ramsey R, Good E, Dick M. Testing the price and affordability of healthy and current (unhealthy) diets and the potential impacts of policy change in Australia. BMC Public Health 2016;16:1-22.
33. Lee AJ, Kane S, Lewis M, Good E, Pollard CM, Landrigan TJ, Dick M. Healthy diets ASAP - Australian Standardised Affordability and Pricing methods protocol. Nutr J 2018;17:1-14.
34. Mintel. UK Online Grocery Retailing Market Report 2022 [Internet]. London, UK: Mintel Group Ltd; 2023 Jun. Available from: https://store.mintel.com/report/uk-online-grocery-retailing-market-report
35. Pedroni C, Vandevijvere S, Desbouys L, Rouche M, Castetbon K. The cost of diets according to diet quality and sociodemographic characteristics in children and adolescents in Belgium. Int J Food Sci Nutr 2022;73:336-48.
36. Jones NRV, Tong TYN, Monsivais P. Meeting UK dietary recommendations is associated with higher estimated consumer food costs: an analysis using the National Diet and Nutrition Survey and consumer expenditure data, 20082012. Public Health Nutr 2018;21:948-56.
37. Pedroni C, Castetbon K, Desbouys L, Rouche M, Vandevijvere S. The Cost of Diets According to Nutritional Quality and Sociodemographic Characteristics: A Population-Based Assessment in Belgium. J Acad Nutr Diet 2021;121:21872200.e4.
38. Kaur A, Scarborough P. The cost of achieving the Eatwell Guide diet update: report. Oxford, UK: Nuffield Department of Population Health, University of Oxford; 2022 Jul.
39. Conrad Z, Reinhardt S, Boehm R, McDowell A. Higher-diet quality is associated with higher diet costs when eating at home and away from home: National Health and Nutrition Examination Survey, 2005-2016. Public Health Nutr 2021;24:5047-57.

Methods to assess the price of diets

Appendix 1: Details of all papers included in the review

See Excel file: Methods of assessing cost of diets - supporting data table.

Methods to assess the price of diets

Appendix 2: Example food baskets for Planetary Heath Diet and a typical weekly Australian diet for a household (two adults, a teenager and a pre-school child) from Goulding et al. (2020) (10).

Methods to assess the price of diets

Basket item	Amount	Basket item	Amount
		Cheddar cheese	630 g
Dairy foods			
Milk, cow, ready to drink, regular fat, regular	6422 mL	Milk, whole	8250 mL
Protein sources - animal		Yoghurt	3200 g
Beef, diced, untrimmed, raw	185 g	Allowance for unsaturated spreads and oils	
Pork, diced, raw	185 g	Margarine	144 g
Eggs, chicken, whole, raw, regular	344 g	Discretionary food choices	
Fish, salmon, raw, atlantic	741 g	Butter	320 g
Chicken, breast, with skin, raw	767 g	Chicken stock	15 g
Protein sources - plant		Coca Cola	2400 mL
Lentils, red, dried	926 g	Frozen fish sticks	320 g
Beans, red kidney, dried, uncooked	132 g	Frozen meat pie	1520 g
Beans, cannellini, dried	132 g	Frozen pizza	1040 g
Peas, split, uncooked	265 g	Ice cream	899 mL
Tofu, firm	132 g	Lamington biscuit	300 g
Nuts, peanut, raw, unsalted	1058 g	Mayonnaise	240 g
Tree nuts		Orange juice drink	3626 mL
Nuts, almonds, raw, with skin	53 g	Potato chips	88 g
Nuts, cashews, raw	265 g	Sugar, white	28 g
Seeds, sunflower	344 g	Tinned spaghetti	1590 g
Added fats		Tomato soup	880 g
Oil, coconut	196 mL	Jam	104 g
Oil, olive, extra virgin	1151 mL	Popcorn	135 g
Lard	132 g	Worcester sauce	20 g
Added sweeteners			
Sugar, raw, regular	820 g		

Methods to assess the price of diets

Appendix 3: Example of rationale for including different food items from Dawson et al (2008) (13)

	$\begin{aligned} & \underset{y}{\varepsilon} \\ & \stackrel{H}{O} \\ & \hline 0 \\ & \circ \end{aligned}$							$\stackrel{\text { Un }}{2}$	
Bread, cereal and potatoes ($\mathrm{n}=9$)	Brown rolls		-2	12					Yes
	Porridge oats		-4	9	Yes				
	Potatoes	Yes	-2	94					
	Potatoes (oven chips)		0	24		Yes			
	Rice (brown)		-2	1			Yes		
	Rice (white)		0	21					Yes
	Spaghetti (dry)	Yes	-5	39					
	Weetabix	Yes	-6	13				Yes	
	Wholemeal bread	Yes	-3	23				Yes	
Fruits and vegetables ($\mathrm{n}=17$)	Apples	Yes	-5	28					
	Bananas	Yes	-1	48					
	Grapes		-2	11					Yes
	Oranges	Yes	-6	13					
	Orange juice	Yes	-4	20				Yes	
	Pineapple (canned)		-3	6		Yes			
	Berries (frozen)		-5	11	Yes				
	Baked beans	Yes	-6	31					
	Broccoli	*	-10	8					
	Carrots	Yes	-8	20					
	Cucumber	Yes	-5	36					
	Lettuce	Yes	-6	36					
	Onions	Yes	-5	13					
	Peas (frozen)	Yes	-14	20		Yes			
	Peppers (red)		-6	29					Yes
	Sweet corn (canned)	*	2	18		Yes			
	Tomatoes	Yes	-6	66					
Dairy$(n=3)$	Semi-skimmed milk	Yes	0	43				Yes	
	Skimmed milk		-2	13			Yes		
	Low-fat yoghurt	Yes	0	14					
Meats, fish, etc ($\mathrm{n}=5$)	Beef mince (lean)	Yes	0	13			Yes		
	Birds Eye Lasagne		0			Yes			
	Chicken breast Haddock fillets (no coating)	Yes $*$	-4 -4	18 10	Yes		Yes		
	Salmon fillets	*	-2	16	Yes				
Fatty and sugary foods $(n=1)$	Low-fat PUFA spread	Yes	10	37					

Methods to assess the price of diets

Appendix 4: Australian Standardised Affordability and Pricing data collection protocol and recording sheets from Lee et al. 2018 (32).

1. Record the usual price of an item, i.e. do not collect the sale/special price unless it is the only price available (if so, note in comment column)
2. Look for the specified brand and specified size for each food item, and record the price
a. If the specified brand is not available: Choose the cheapest brand (non-generic) available in the specified size. Note this brand in the "Your brand" column
b. If the specified size is not available: Choose the nearest larger size in the specified brand. If a larger size is not available, choose the nearest smaller size. Note this size in the "Your size" column
c. If both the specified brand and specified size are not available: Choose the cheapest in the nearest larger size of another brand (non-generic). If a larger size is not available, choose the nearest smaller size
d. If multiple brands are specified, record the price of the cheapest one and note brand in the "Your brand" column
e. If the item is only available in a generic form (e.g. Home Brand, Coles, Woolworths Select, Black and Gold) choose the most expensive generic item in the specified size. If the specified size is not available, choose the nearest larger size. If a larger size is not available, choose the nearest smaller size. Note the generic name in the "Your brand" and the size in the "Your size" columns
3. Loose produce: choose the usual cheapest price per kg of the variety not on special. If the only variety available is on special, record the special price and note in comments column
4. Peanuts: choose the branded packet size closest to 250 g . If packaged, roasted, unsalted peanuts are not available, record the price of the loose 'bulk scoop \& weigh' roasted, unsalted peanuts per 100 g
5. Check all data are collected and recorded as above, before leaving store

Methods to assess the price of diets

Food	Specific brand	Your brand	Specific size	Your size	Your cost	Comment s
Fresh Fruit						
Apples, red, loose			per kg			
Bananas, cavendish, loose			per kg			
Orange, loose			per kg			
Fresh Vegetables						
White potato, loose, brushed/washed			per kg			
Broccoli, loose			per kg			
Cabbage, white			$1 / 2$ cabbage or per kg			
Lettuce, iceberg, whole			Whole			
Carrot, loose			per kg			
Pumpkin, Jap, Kent, or			per kg			
Butternut						
Brown onion, loose			per kg			
Tomato, loose (not vineripened)			per kg			
Tinned Foods						
Tinned sweet corn, kernels, no added salt	Edgell		420g			
Tinned 4 bean mix	Edgell		420g			
Tinned tomatoes, diced/chopped in tomato juice	Ardmona		400g			
Fruit salad, canned/jar in juice	Goulburn Valley		700g			
Tinned steak \& vegetables	Harvest		425g			
Tinned baked beans, in tomato sauce	Heinz		420g			
Tinned chicken \& vegetable soup, ready to eat	Campbell's Country Ladle		505g			
Tuna, canned in vegetable oil, unflavoured	John West, Greenseas or Sirena		185g			
Pantry Foods						
Wholemeal Bread						
White Bread	Tip Top Sunblest		700g			
Muffin, commercial, un-iced, any flavour, single or multipack	Supermarket		Record weight			
Rolled oats, whole, Traditional (not quick oats)	Uncle Toby's		1 kg			
Cornflakes	Kellogg's		725g			
Weet-bix	Sanitarium		375g			
Spaghetti (white)	San Remo		500g			
White rice, medium grain	SunRice		1 kg			
2 Minute noodles, chicken, single or 5/6 pack	Maggi or Fantastic		Record weight			
White Sugar	CSR		2 kg			
Cream-filled biscuit	Arnott's Monte-Carlo		250g			
Chewy Choc Chip Muesli Bar	Uncle Toby's		185g			
Water Crackers, plain	Arnott's		125g			
Savoury flavoured biscuits	Arnott's BBQ Shapes		175g			

Methods to assess the price of diets

Food	Specific brand	Your brand	Specific size	Your size	Your cost	Comment s
Peanuts - roasted, unsalted peanuts	Cheapest branded		250g			
Mixed nuts, (incl. peanut), salted	Nobby's		375g			
Mint confectionary	Allen's Minties		150g			
Dairy milk chocolate, block	Cadbury		200g			
Chips/crisps, original, salted	Smith's or Thins		170 g			
French Dressing, regular fat	Praise		330 mL			
Tomato sauce, regular (not ketchup)	Heinz Big Red or Masterfoods		500 mL			
Sunflower oil	Crisco		750 mL			
Olive oil, Traditional (not extra virgin)	Moro		1 Litre			
Meats						
Lean/4 star beef mince (not heart smart)	Pre-pack(not vacuum)		per kg			
Lamb loin chops	Pre-pack		per kg			
Beef rump steak	Pre-pack		per kg			
Beef Sausages, 6-8 pre-pack Refrigerated Items	Supermarket		per kg			
Cheddar cheese, regular fat	Cheer (Coon)		250g			
Cheddar cheese, reduced fat	Cheer (Coon)		250g			
Butter, original, salted (foil pack)	Western Star		250g			
Canola Margarine, regular fat	Meadow Lea		500g			
Full cream milk, fresh	Paul's or Dairy Farmers		2L			
Reduced fat milk, fresh (not skim)	Paul's Trim or Dairy Farmers Lite		2L			
Chocolate Milk, regular fat	Breaka, Big M, Oak or Paul's		600 mL			
Orange Juice, Australian Grown (Fresh, chilled)	Berri		2L			
Plain Yoghurt, natural, Greek, regular fat ($\sim 4 \%$ fat)	Jalna		1kg			
Yoghurt, vanilla/flavoured, reduced fat ($\sim 1 \%$ fat)	Jalna		1kg			
Leg Ham, pre-pack	Don's		250g			
Eggs, dozen, Free Range Drinks	Sunnyqueen Farms		700g			
Bottled water, still	Mt Franklin		600 mL			
Soft drink, Cola	Coca Cola		1.25L			
Diet soft drink, Cola	Coca Cola		1.25L			
Frozen Foods						
Frozen mixed vegetables	Heinz, Birdseye or McCain		500g			
Frozen peas	Edgell, Birdseye or McCain		500g			
Beef lasagne, frozen	McCain		400g			
White crumbed fish fillet, frozen	Birds Eye		425g			
Vanilla Ice cream, regular fat Other Items	Nestle Peters Original		2L			

Methods to assess the price of diets

Food	Specific brand	Your brand	Specific size	Your size	Your cost	Comment s
Whole Barbeque Chicken, cooked - Large/ Family	Supermarket		Whole			
Pre-made Sandwich (Preferably chicken \& salad on wholemeal bread)	Supermarket or, if unavailable, at closest garage/service station		2sl bread + filling (triangle pre-pack)			

Items from other stores: \qquad

Food	Store	Your store	Specific size	Your size	You r cost
Cooked hot potato chips	 Chip shop	1 serve			
Beef hamburger (Big Mac) Beef Pie, single serve, full pastry Supreme Pizza, thin base McDonald's Independent Bakery	Pizza Hut	1 burger			

Liquor Store Name: \qquad

Food	Specific brand	Your brand	Specific size	Your size	Your cost	Comments
Beer	VB		$6 \times 375 \mathrm{~mL}$			
Sparkling white wine	Yellow		750 mL			
Whisky	Johnny Walker Red Label		700 mL			
Red wine	Penfolds Koonungara Hill		750 mL			
	Shiraz					

[^0]: ${ }^{1}$ We use the term 'price' to denote the amount paid for food in supermarkets, takeaways etc. This is distinct from the 'cost' of food, which we take to mean the price plus other expenses such as energy for cooking, transport to purchase etc.

