ERRATA

Corrections to published RIFE reports

	Page, Section	Comment		
RIFE-1	38, Section 16.2	Last but one sentence, replace	1994 with 1995.	
1995	39, Section 16.4	First sentence, 2 nd paragraph, r	eplace 1994 with 1	995.
	45, Table 1	Replace ²⁴¹ Am Sellafield (se with 0.3 TBq. Replace ⁶⁰ Co Harwell (pipeline	a pipelines) limit e) percentage of 1.	of 1.3 TBq 5 with 6.9.
	74, Table 16 99, Table 33(a)	The following activity in soil Bq kg ⁻¹ (dry) whilst they shou kg ⁻¹ (wet). All data are average	data were reporte ld have been repo s unless stated.	d as being rted as Bq
		Site/location ²¹⁰ Po	²³⁸ Pu	239+240 Pu
		Sellafield (Table 16) 64 Aldermaston (Table 33(a)) max	0.0091 0.016	0.36 0.56
	99, Table 33(a) 133, Appendix 3	The concentration of 137 Cs in was 12±0.15 Bq kg ⁻¹ (dry) The average consumption ratiold children were 1.5 kg y ⁻¹ . The consumption of whelks a (Whitehaven commercial) was	clay at Outfall (Pater tes of nuts and of at Sellafield by gr s 11 kg y ⁻¹ .	angbourne) fal by 10 year oup E
	138, Appendix 6	The values of t_f and t_s were 0. offal (²⁴¹ Pu) and lamb (²⁴¹ Pu) were spectively.	The transfer factor vere 2 10 ⁻² and 4 10	rs for beef) ⁴
RIFE-2 1996	32, Section 8.1	Lines 8-11. Replace with "fuel were found on the public small fragments were found the range 10^5 - 10^8 Bq (these a operator). They were all fou which although a public area is	In 1996 no fragm c beach at Dounre with caesium-13 activities were me ind on the Dounre a largely inaccessib	nents of spent eay. Thirteen 7 activities in easured by the eay foreshore le. A"
	58, Table 2	Replace ³⁵ S Oldbury limit of 0 Replace ⁴¹ Ar Trawsfynydd lim 3500 TBq.	.8 TBq with 0.75 T iit of 350 TBq with	ſBq. 1

Page, Section	Comment				
85, Table 16 87, Table 18 91, Table 20(a) 95, Table 21	The following activit $Bq kg^{-1}(dry)$ whilst the $Bq kg^{-1}(wet)$. All dates	y in soil data ney should h ta are averag	a were reported ave been report ges unless stated	as being ed as l.	
119, Table 41	Site/location	²³⁴ U	²³⁵ U	²³⁸ U	
	Drigg (Table 16)	8.3	0.28	7.4	
	Ravenglass (Table 18)	16	0.56	15	
	Springfields (Table 20(a))	49	2.3	45	
	Capenhurst (Table 21)	9.8	0.36	10	
	Derby (Table 41)	44	1.7	43	

Table 47

This was omitted in error. The data are attached.

Table 47. Radioactivi	ty in plants	near landfi	ll sites,	1996						
Sampling location	Material	aterial No of Mean radioactivity concentration (dry)*, Bq kg ⁻¹ samples								
		<u> </u>	³ H	¹⁴ C	⁹⁰ Sr	¹²⁵ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	239+240 Pu
Beddingham Lewes, East Sussex	Grass	4	<40 ±18	130 ±28	1.8 ±0.1	<0.19	<0.61	<0.54 ±0.30	<0.00099 ±0.00037	0.0067 ±0.0012
Cilgwyn Quarry, Gwynedd	**	4	<30	360 ±55	3.0 ±0.2	<063	<0.69	<5.2 ±0.9	<0.0095	0.018 ±0.005
Lyndown, Devon	66	4	<28	150 ±30	2.4 ±0.2	<1.3 ±0.2	<0.60	<0.62 ±0.17	< 0.0010	<0.0024 ±0.0009
Witton, Cheshire	"	4	<38	130 ± <i>33</i>	0.76 ±0.12	<1.1 ±0.3	<0.59	<0.63	< 0.0013	0.0021 ±0.0016

* Results are available for other artificial nuclides detectable by gamma spectrometry All such results are less than the limit of detection

RIFE-3 1997	19, Table 1.1	Replace beta, tritium discharges with 1.97 respectively. Replace alpha and be with 4.44 10 ⁻³ TBq a	and ⁶⁰ Co De 10 ⁻⁶ , 2.22 10 eta limit and 1 nd <1 respec	evonport (sewer) ⁻⁶ , 5.60 10 ⁻⁷ TE percentage Gree tively.) 3q enwich
	21, Table 1.2	Replace tritium Win	frith limit wit	th 5 TBq.	
	38, Section 3.6.5	First paragraph. Re per milligray should	eference to fa d be ICRP (1	actor of 0.85 m 996b).	nillisievert
	70, Table 4.10 72, Table 4.12 81, Table 4.16 121, Table 9.1	The following activit Bq kg ⁻¹ (dry) whilst t kg ⁻¹ (wet). All data a Site/location	ty in soil data hey should h are averages u ²³⁴ U	a were reported ave been report inless stated.	as being ed as Bq ²³⁸ U
		Drigg (Table 4.10) Ravenglass (Table 4.12) Springfields (Table 4.12) Capenhurst (Table 4.16)	9.9 18 31 9.5	0.37 0.60 1.5 0.40	9.5 16 30 9.5
		Derby (Table 9.1)	27	0.97	24
	90, Section 6.3	The maximum dose by adults.	due to gaseou	us disposals wa	s received
	161, Appendix 4	The 1 year old child of	dose coefficie	ent for ⁹⁹ Tc was	4.80 10 ⁻⁹ .

	Page, Section	Comment			
RIFE-4 1998	70, Table 4.12	The concentrations o (max) were 0.61 and value for ¹⁵⁵ Eu is availa	f total Cs a <1.8 Bq kg able.	and ¹⁴⁴ Ce in c 5 ⁻¹ (wet) respe	ovine muscle ctively. No
	75, Table 4.15(a) 77, Table 4.16 116, Table 9.1	The following activity Bq kg ⁻¹ (dry) whilst th kg ⁻¹ (wet). All data are	y in soil data any should h averages ur	a were reporte ave been repo lless stated.	ed as being orted as Bq
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U
		Springfields (Table 4.15(a)) Capenhurst (Table 4.16) Derby (Table 9.1)	72 7.9 31	3.0 0.30 0.93	68 7.4 26
	96, Table 6.4(a)	The concentration of 24 <1.0 Bq kg ⁻¹ (dry). No made.	⁴¹ Am in muo 9 measuremo	d at Paddy's H ent of ^{239/240} Pu	ole was was
	125, Section 11.1	Last but one paragrap	h. The es	timated dose	was 0.094 mSv.
	131, Section 11.8	Last paragraph, first se	ntence. Rep	lace 1997 with	n 1998.
RIFE-5 1999	71, Table 4.15(a) 73, Table 4.16 118, Table 9.1	The following activity Bq kg ⁻¹ (dry) whilst th kg ⁻¹ (wet). All data are	y in soil data ney should h averages ur	a were reporte ave been repo lless stated.	ed as being orted as Bq
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U
		Springfields (Table 4.15(a)) ma Capenhurst (Table 4.16) max Derby (Table 9.1) max	12 12 34	15 0.46 1.3	200 12 31
	112, Section 8.2	The second sentence duck and tide washed p 0.032 and 0.009 mSv duck pathway should washed pasture is corre	of paragraj pasture pathy y ⁻¹ respect l read 0.042 ect.	oh three state ways gave dos ively." The mSv y ⁻¹ . Th	s that "the es of dose due to the e value for tide
	123, Table 10.2	The concentration of $Bq kg^{-1}$ (wet).	¹⁴ C in gras	s from Billin	gham was 960
	162, Table A1.2	The Dounreay (Fast Re	eactor) data	were duplicate	d.
RIFE-6 2000	31, Section 3.5	It was stated that the radionuclides. This ser	dose limits	do not apply d be deleted.	to natural
	75, Table 4.16 124, Table 9.1	The following activity Bq kg ⁻¹ (dry) whilst th kg ⁻¹ (wet). All data are	y in soil data ey should h averages ur	a were reporte ave been repo iless stated.	ed as being orted as Bq
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U

Site/location	²³⁴ U	²³⁵ U	²³⁸ U	
Capenhurst (Table 4.16) max	8.5	0.35	8.4	
Derby (Table 9.1) max	24	0.96	23	

	Page, Section	Comment
	155, Table 12.1	Target date for project 'Tritium and carbon-14 in seafood' should have been March 2003.
	166, Table A1.1	Discharges of tritium from Devonport (pipeline) given as 0.87 TBq should have been 0.087 TBq.
	168, Table A1.2	Sellafield Discharge limits of alpha and beta activity should have been 0.00196 and 0.328 TBq. Percentage of limit for alpha and beta activity should have been 4.0 and <1. Discharges of tritium and ¹⁴ C from Sellafield given as 213 and 2.58 TBq should have been 355 and 2.94 TBq. Relevant percentages given as 15 and 30 should have been 25 and 34.
RIFE-7 2001	71, Table 4.8 80, Table 4.15(a) 93, Table 5.2(a) 122, Table 7.3 127, Table 8.2(a) 130, Table 9.1	The following activity in soil data were reported as being $Bq kg^{-1}(dry)$ whilst they should have been reported as $Bq kg^{-1}(wet)$. All data are averages unless stated.

Site/location	60Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am
Sellafield (Table 4.8)	< 0.80	<3.1	<1.1		80				5.8
max	1.2				97	9.3	0.34	9.1	6.0
Springfields (Table 4.15(a))									
max						95	4.6	89	
Harwell (Table 5.2(a))	< 0.40			< 0.40	2.9				
Featherstone position A (Table 7.3	3)					9.5	0.41	9.0	
Featherstone position B (Table 7.3)					7.3	0.34	7.5	
Cardiff (Table 8.2(a))	, ,			< 0.33	5.6				
max				< 0.40	6.5				
Derby (Table 9.1)						18	0.80	18	
max						30	1.3	29	
176,	Table A1.1		Dischar	ges of Alp	ha for Hı	interston	'A' give	en as 0.14	TBq

176, Table A1.1	Discharges of Alpha for Hunterston 'A' given as 0.14 TBq should have been $1.4 \ 10^{-5}$ TBq. The % of limit given as 350 should have been <1 .
181, Table A1.2	Dungeness 'A' discharge limit and % of limit for tritium

Dungeness 'A' discharge limit and % of limit for tritium should have been 3 and 23 respectively.

RIFE-8

2002

59, Table 4.1

Two tritium results were omitted. The data are attached.

Table 4.1.	Beta/gamma radioad Sea vicinity and furth	ctivity in fish from th er afield, 2002	e Irish
Location	Material	No.of sampling observ- a <u>tions</u>	³ H
Liverpool Bay	Flounder	2	<25
Mersey estuary	Flounder	2	<25

F	Page, Section		Comment					
7 8 1 1	9, Table 4.14 2 Table 4.17 28, Table 7.1(a) 38, Table 8.2(a)		The follow Bq kg ⁻¹ (dr Bq kg ⁻¹ (we	ing activity y) whilst th et). All data	v in soil da ey should a are avera	ta were rep have been ges unless	orted as be reported as stated.	eing S
Site/location	⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U
Sellafield (Table 4.14)	<0.80	<2.3	<1.2	68				
max Drigg (Table 4.17)	1.0	<2.7	<1.4	82				
max						6.9	0.30	6.5
Aldermaston (Table 7.1(a))								
max						8.7	0.35	8.3
Cardiff (Table 8.2(a))				< 0.30	6.4			
max					8.1			

Figure 6.1. Caesium-137 concentration in sediments near nuclear power stations

RIFE-1 - RIFE-8 1995-2002 Urenco Capenhurst have reassessed atmospheric discharges of uranium; the reassessed discharges are listed in Table E1.

Table E1. Reassessed atmospheric discharges of uranium from Urenco Capenhurst						
Year	Original reported discharge TBq	Reassessed discharge TBq				
1993	1.74 10-9	2.41 10-7				
1994	6.74 10-9	2.63 10-7				
1995	2.69 10-8	2.75 10-7				
1996	1.11 10-7	8.23 10-7				
1997	6.80 10-8	4.90 10-7				
1998	6.87 10-8	1.87 10-6				
1999	8.15 10-8	1.01 10-6				
2000	9.64 10-8	8.72 10-7				
2001	1.20 10-7	9.77 10-7				
2002	1.16 10-7	6.01 10-7				

RIFE-9 2003	82, Table 3.15 138 Table 6.1(a) 141, Table 6.3(a) 151, Table 7.3(a) 157, Table 8.1(a)	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.
----------------	---	---

Comment

Site/location	⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	¹⁵⁴ Eu	²³⁴ U	²³⁵ U	²³⁸ U	²⁴¹ Am
Sellafield (Table 3.15)	<0.90	<3.3	<1.2	<0.40	75	< 0.50				5.9
max	1.6	<4.2	<1.6		89	<0.60	11	0.54	10	7.7
Aldermaston (Table 6.1(a))										
max							11	0.48	11	
Derby (Table 6.3(a))										
max							47	1.6	40	
Cardiff (Table 7.3(a))				< 0.40	8.8					
max					11					
Drigg (Table 8.1)										
max							6.7	0.26	6.7	

185, Table 9.12

Page, Section

Some data were incorrect. The amended version of the table is attached.

Table 9.12. Concentrations of radionuclides in rainwater and air 2003

Location	Sample	No. of	Mean radioactivity concentration ^a in rainwater and air								
		sampling observ- ations	³ H ⁷	Be	90Srb	¹³⁷ Cs	²¹⁰ Pb	²¹⁰ Po	²²⁸ Th	Gross alpha ^b	Gross beta ^b
Ceredigion Aberporth	Rainwater Air	12 4	<2.4	<1.6 0.0022		<0.053 <0.0000052	0.10 0.00017		*		
Co. Down Conlig	Rainwater Air	4 4		<1.5 0.0022		<0.022 <0.00000063	* 0.00015		*		
Dumfries and Gall	loway Eskdalemuir Air	Rainwater 4	4	<2.7 0.0018	1.2	<0.00000043	<0.0098 0.00013	0.094	*	*	
North Yorkshire Dishforth	Rainwater Air	4 4		<2.2 0.0016		<0.039 <0.00000055	* 0.00014		*		
Oxfordshire Chilton	Rainwater Air	12 13		<1.5 0.0018	<0.00064	<0.032 <0.00000034	0.32 0.00027	<0.000014	*	0.074	0.17
Shetland Lerwick	Rainwater Air	4 4		1.6 0.0015		<0.017 <0.00000052	* 0.00010		*		
Suffolk Orfordness	Rainwater Air	4 4	<2.2	<2.4 0.0022		<0.048 <0.00000053	* 0.00020		5.2 *		

* Not detected by the method used ^a Bq l¹ for rainwater and Bq kg⁻¹ for air

^b Annual bulk analysis

187, Table 9.14

The concentration of ^{210}Po in Cornwall, River Fowey was ${<}0.0098$ Bq $l^{\text{-1}}.$

Page, Section

Comment

188, Table 9.16

A revised version is attached.

Table 9.16. Estimates of maximum radiation exposure from radionuclides in drinking water, 2003^a

Country	Exposure, mSv Man-made radionuclides ^b	Natural radionculides ^e	All radionuclides
England	<0.001	0.028	0.028
Northern Ireland	<0.001	0.026	0.026
Scotland Wales	<0.001 <0.001	0.027	0.027

a The maximum dose is selected for each nuclide group from data for individual sampling locations. Many estimates of dose are based on concentration results at limits of detection.

b Including tritium

c Including carbon-14 d Analysis of natural radionuclides was not undertaken

	214, Table A1.2	The data shown for Faslane are a duplication of the data for Rosyth and were included in error.
RIFE-10 2004	75, Table 3.7	The entry for Haverigg should read 0.087.
200.	45, Figure 3.8	An incorrect bar in Figure 3.8 for Americium discharge is corrected below:

Figure 3.8. Americium-241 and liquid discharge from Sell afield and concentrations in cod*, lobsters and winkles near Sellafield (* estimated in 2004 due to lack of availability of cod)

87, Table 3.15
151 Table 6.1(a)
154, Table 6.3(a)
166, Table 7.3(a)
173, Table 8.1(a)

The following activity in soil data were reported as being Bq kg^{-1} (dry) whilst they should have been reported as Bq kg^{-1} (wet). All data are averages unless stated.

Site/location	⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U
Sellafield (Table 3.15)	<0.43	<1.4	<0.73		_		_	
max	0.80	<1.5	< 0.80			16	0.64	15
Aldermaston (Table 6.1(a))								
max						7.8	0.29	7.2
Derby (Table 6.3(a))								
max						27	0.94	23
Cardiff (Table 7.3(a))				<0.47	7.1			
max				< 0.50	7.7			
Drigg (Table 8.1)								
max						11	0.42	11

	Page, Section	Comment						
	223, Table A1.1	The % annual limit for 106 Ru discharge at Sellafield was 7% (not 70%).						
	246, Table A5.1	Some dose per uni These were:	it intake values were missing for 1 yr old.					
		Table A5.1. Dosimetr	ic data					
		Radionuclide	Dose per unit intake by inhalation using ICRP-60 methodology (Sv Bq ¹)					
		Sr-90 [†] Zr-95 [†] Ba-140 [†] Pb-210 [†] Th-228 [†] U-238	1.2E-07 2.1E-08 2.6E-08 4.0E-06 1.4E-04 9.4E-06					
		† Energy and dose per un lived daughter products	nit intake data include the effects of radiations of short-					
RIFE-11 2005	72, Table 3.3a	Footnote 'd' showed	Footnote 'd' showed an incorrect value. It should have read: ^{<i>d</i>} The concentration of ²³⁷ Np was 0.00035 Bq kg ⁻¹					
	112, Table 4.3a	Column headings should have read: $239P_{u+}$ $240P_{u}$ $241P_{u}$						
	140,Table 5.5a	The result of < 0.13 for ²⁴¹ Am in the <i>Fucus vesiculosis</i> samples from Pilot Station was incorrectly put into the ²³⁹ Pu+ ²⁴⁰ Pu column.						
	206, Figures 9.5 and 9.6	Incorrect units were shown. The correct units were mBq 1 ⁻¹ .						
	225, Table 9.15	Incorrct headings have been as below	in the top part of the table. Should w:					
Table 9.15	5. Concentrations of radion	clides in sources of drinkir	ng water in England and Wales.					

Concentrations of radionuclides in sources of drinking water in England and

Location	Sample source		No. of Magazina No		Mean radioactivity concentration, Bq l ⁻¹					
			ations	$^{3}\mathrm{H}$	⁴⁰ K	⁹⁰ Sr	¹³⁷ Cs	²¹⁰ Po		
Wales		_			-0.020	0.0026	0.0010	<0.010		
Gwynedd Mid Clamorgan	Liver on Poservoir		4	<4.0	<0.020	0.0036	0.0018	< 0.010		
Powys	Elan Valley Reservoir		4	<4.0	<0.043	0.0030	0.00090	<0.013		
	248, Table A1.2	Sellafiel have bee	ld disch en 8.90	arge l 10 ⁻⁵ a	imits for and 0.00	r alpha 174 TB	and beta q respec	should tively.		
	251, Table A1.2	Alderm have bee	aston ' en 14.1	Tritiu and 8	m disch 3.3 respe	arge and ctively.	nd % li	mit should		
∃ 8-11 2-2005	Concentrations in sediments	For sedi contents sample l calibrati factor ha affected reported	ment s s it was bulk de on ran as beer data l here in	ample disco ensities ge. I calcu from n Table	s with u vered in s were o Followin llated an 2002-20 e E2.	nusuall 2007 ti utside t g inves d this h 005 and	y high w hat the re he instru stigation has been d the ne	vater esulting iment s a correc applied to ew results		

These amendments do not significantly affect any assessments, charts or statements in the relevant RIFE reports.

Table	E2. Amen	ded concentrations of radionuclides i	in sedime	ent, 200)2 20()5					
Year	Site	Location	No. of sampling	Mean radioactivity concentration (dry), Bq kg ⁻¹							
			observ-	57Co	⁶⁰ Co	_	65Zn	$\frac{95}{2r}$	95Nb	¹⁰⁶ Ru	¹²⁵ Sb
2002	Aldermaston Bradwell Capenhurst Cardiff	Reading (Kennet) Stream draining south Maldon Waterside Rossmore (4.3 km downstream) Canal West of pipeline	4 4 2 2 2 2 2 2		<3.4 <4.0						
	Devonport Dungeness Harwell Sellafield	Lopwell Pilot Sands Appleford Day's Lock Caerhun	2 2 4 4 2		<3.7 <0.9 <0.6 <0.5 <3.3	0 0 0		<9.6	<7.7	<23	<9.2
2003	Aldermaston Amersham Bradwell Cardiff Derby	Reading (Kennet) Aldermaston Outfall (Grand Union Canal) Waterside Canal River Derwent (downstream)	4 4 3 2 1 4	<0.30	<1.1 <2.0 <1.0		<1.5				
2004	Devonport Aldermaston	Lopwell Reading (Kennet) Aldermaston	2 4 4 4		<2.5						
	Amersham Cardiff Sellafield	Upstream of outfall (Grand Union Canal) 2 Canal Caerhun	2 2	<6.4	<1.8 <1.6		<4.1	<4.5	<2.2	<12	<13
2005	Aldermaston Amersham Cardiff Harwell	Reading (Kennet) Upstream of outfall (Grand Union Canal) 2 Canal Lydebank Brook	4 2 4	<5.3	<1.6 <1.7		<3.6				
	Sellafield Trawsfynydd	Appletord Caerhun Bailey Bridge	4 2 2		<2.5 <2.6 <8.3			<8.8	<6.8	<20	<20 <44
Year	Site	Location	No. of sampling	g Mean radioactivity concentration (dry), Bq kg ⁻¹							
			observ- ations	<u>125</u> I	¹³¹ I	$\frac{134}{Cs}$	<u>137Cs</u>	<u>144Ce</u>	¹⁵⁴ Eu	¹⁵⁵ Eu	²⁴¹ Am
2002	Aldermaston Bradwell Capenhurst Cardiff Devonport Dungeness Harwell	Reading (Kennet) Stream draining south Maldon Waterside Rossmore (4.3 km downstream) Canal West of pipeline Lopwell Pilot Sands Appleford Dav's Lock	4 2 2 2 2 2 2 2 2 2 2 4 4	<0.80 <3.1		6.5 3.9	7.3 <5.1 80 59 <4.4 2.4 33 7.7 <0.90 <13 6.0				<1.9 <1.2 <4.0 <13
2002	Sellafield	Caerhun	2			<3.4	430	<25	<7.3	<8.0	75
2003	Amersham Bradwell Cardiff Derby Devonport	Aldermaston Outfall (Grand Union Canal) Waterside Canal River Derwent (downstream) Lopwell	4 3 2 1 4 2	<1.0 <1.4	<550		8.0 6.3 <2.1 35 16 <10				<1.6 <2.7 <2.7
2004	Aldermaston Amersham Cardiff Sellafield	Reading (Kennet) Aldermaston Stream draining south Upstream of outfall (Grand Union Canal) 2 Canal Caerhun	4 4 2 2	<0.80 <1.5	<1.4	<1.5	5.4 <3.9 <2.8 10 11 220	<5.7	<7.3	<3.1	<1.1 <1.3 1.6
2005	Aldermaston Amersham Cardiff Harwell	Reading (Kennet) Upstream of outfall (Grand Union Canal) 2 Canal Lvdebank Brook	4 2 4	<1.0 <1.8	<9.1		<3.9 6.2 9.1 9.0				6.5
	Sellafield Trawsfynydd	Appleford Caerhun Bailey Bridge	4 2 2			<2.5 <4.2	<11 230 920	<9.3	<12	<5.3	59 76

	Page, Section	Comment					
RIFE-11 2005	270, Table A7.2B	Trawsfynydd, should readPrenatal children of0.008Direct radiation, gammaoccupants over sedimentdose rate over sand/stone					
RIFE-12 2006	70, Table 2.7	The concentration of ²⁴¹ Am in winkles at Drigg should have been 29.					
	103, Section 4 Key points	Line 22 second column replace with • At Dungeness, dose from gaseous discharges increased.					
	187, Figure 8.5	The range in the key should have been 2 to 8.					
	234, Table A4.2B	Trawsfynydd, should read Prenatal children of fish 0.013 Fish, gamma dose rate over consumers sediment, ⁹⁰ Sr					
RIFE-13 2007	127, Table 4.5a	The ²¹⁰ Po and ²¹⁰ Pb results are the wrong way round for South Gare winkles. ²¹⁰ Po should be 11 and ²¹⁰ Pb should be 0.46 Bqkg ⁻¹					
	153, Table 5.1	Derby, the total exposure and exposure from intakes of sediment and water should have been <0.005 mSv.					
	161, Section 6 Key points	Line 17 second column should read • The total dose of 0.008					
	236, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.014 Fish, gamma dose rate over sediment, ⁹⁰ Sr, ¹³⁷ Cs, ²⁴¹ Am					
	239, Appendix 5	Line 3 first column should read indicated that it was likely there would be no adverse impact					
RIFE-14 2008	12, Figure S1	Both bars for Bradwell should be the same height. The bar for exposures due to liquid wastes is wrong.					
	33, Section 2	Springfields, doses to the public Lines 1 & 2 second column should read pathways from gaseous discharges were less than 0.005mSv which was less than 0.5 per cent					
	51, Figure 2.22	The bar for Whitehaven in 2008 should have been the same height as the bar for 2007					
	109, Section 4	Gaseous discharges and terrestrial monitoring Line 28, first column should read The results of monitoring for 2008					
RIFE-14 2008	167, Table 6.3a	Results for Cardiff East WWTW should have been:					

	Material	Location or selection ^b	No. of sampling	Mean ra Bq kg ⁻¹	idioactivity co	ncentratior	n (fresh)ª,	
			ations	Organic				
				³ Не	зН	зНt	14 ^c	
	Terrestrial samples							
	Crude effluent	Cardiff East WWTW	ЗE	<150	<220	82	<11	
	Final effluent	Cardiff East WWTW	ЗE	<60	<70	ma dose ³ H ^f ⁸² ⁸⁰ ³ H ^f ⁸² ⁸⁰ ^{mathef} ⁹⁰ Sr, ¹³⁷ C ^{mathef} ⁹⁰ Sr, ¹³⁷ C ^{mathef} ¹³⁷ C ^{matheff ¹³⁷C ^{matheff ¹³⁷C ^{matheff ¹³⁷C ^{matheff ¹³⁷C ^{matheff ¹³⁷C ^{matheff ¹³⁷C }}}}}}	<11	
	Sludge pellets	Cardiff East WWTW	3E		76000		740	
	Solids from crude effluent	Cardiff East WWTW	3E		<7500		<1800	
	225, Table A2.2	Sellafield (sea p read 2 10 ⁴	vipelines)	Tritium	discharge	limit sho	uld have	
	236, Table A4.2B	Trawsfynydd, s	hould read	d				
		Adult fish consu	mers	0.010	Fish, gar sedimen	nma dose t, ⁹⁰ Sr, ¹³⁷	e rate over Cs, ²⁴¹ Am	
RIFE-15 2009	233, Table A2.1	MoD Coulport under reported discharges for the end of 2009. The ³ H discharge for 2009 should have been 3.40 E-03 TBq.						
	249. Table A4.2B	Trawsfynydd, s	hould read	d				
	, ,	Adult fish consu	mers	0.012	Fish, gar sedimen	nma dose t, ⁹⁰ Sr, ¹³⁷	e rate over Cs, ²⁴¹ Am	
RIFE-16	30, Table 1.2B	Trawsfynydd, s	hould read	d				
2010		Adult fish consu	mers	0.012	Fish, gar sedimen	nma dose t, ⁹⁰ Sr, ¹³⁷	e rate over Cs, ²⁴¹ Am	
	37, Section 2	Line 13, paragra The dose to will marsh was 0.03 limit for membe dose from 0.036 rates over marsh	aph 3, sec dfowlers a 2 mSv, wl ers of the p 5 mSv (in n in 2010.	ond colu and farm hich was public o 2009) w	umn should hers from e s less than f 1 mSv. T vas due to 1	d read exposure 4 per cer he small lower ga	over salt nt of the dose decrease in mma dose	
	100, Section 3	The graph in Fi is shown in Fig	gure 3.2 is ure 3.2 RI	s missin FE 17	g 2010 dat	a. The da	ata for 2010	
	122, Section 4	Line 7, paragraj An increase in t been observed, occupancy rates reported in 2000	oh 1, first he fish an together v s, in comp 5.	column d crusta vith a de arison w	should rea cean consu crease in t vith those o	d imption i he mollu of the pre	rates has isc and evious survey	
RIFE-16 2010	Appendix 1, Annex 2	2 Table X2.2 Sell said 15kg y ⁻¹ (n	afield Gro ot 18 kg y	oup N wi	inkle cons	umption	should have	

Page, Section

Comment

<i>Total dose</i> – all so	urces Adult occupants over sediment	0.013 <0.005 <0.005 0.012 <0.005 <0.005					
Site	Exposed population ^a	Exposure, mSv per year Total Fish and Other External radiation from intertidal areas plume related radiation from site					
RIFE-18 2012	134, Table 4.1	Hinkley Point. These are small changes to the total dose and source specific dose shown below. The apply to relevant points of text, tables (S, 1.2, 1.3, 1.4 and 4.1) and figures (1.1, 4.1 and 6.2).					
		 6.3 10-5 kg y-¹ mud by mudvertant ingestion 6.3 10-5 kg y-¹ mud by resuspension and inhalation RIFE-17 3.4 10-3 kg y-¹ mud by inadvertant ingestion 6.3 10-5 kg y-¹ mud by resuspension and inhalation 					
		RIFE-15 3.4 10-3 kg y- ¹ mud by inadvertant ingestion 6.3 10-5 kg y- ¹ mud by resuspension and inhalation RIFE-16 3 4 10-3 kg y- ¹ mud by inadvertant ingestion					
		RIFE-14 3.1 10-3 kg y- ¹ mud by inadvertant ingestion 5.6 10-5 kg y- ¹ mud by resuspension and inhalation					
RIFE-14-17 2011	CD, Appendix 1	Table X2.2 Sellafield Q – Ravenglass nature warden assessment, the ingestion and inhalation rates of sediment have been incorrect, they should have read:					
	240, Appendix 2	Inird entry on the table – Capennurst (Orenco OK) the dischargelimits (annual equivalent) ^a Bq column should have read:Uranium7.50E+06Other Alpha2.40E+06Technetium-991.00E+08Others2.25E+09					
	209, Section 9	Line /, paragraph /, should read: Tritium concentrations in the western English Channel were also very low (Figure 9.7).					
	61, Section 2	Springfields 'Source specific doses' last entry on the table should read: 'Consumers of locally grown food' not 'Infant consumers of locally grown food'					
RIFE-17 2011	52, Section 2	On Figure 2.14 the year labels from 2004 to 2011 were underneath the bar chart incorrectly and should have been one place to the right, as shown in RIFE 18.					
	Page, Section	Comment					

<0.005

_

Seafood consumers 0.018

Source specific doses

0.017

_

_

	Page, Section	Com	nent					
RIFE-18 2012	240, Appendix 2	Third (Bq a	entry ond % o	on the tabl f annual li Beta Antimony Caesium-	e – Sell imitb) c -125 137	afield – the d olumns and s 1.03E+09 3.20E+09 1.59E+08	lischarges o should have 2.5 11 2.7	luring 2012 e read:
	41, Figure 2.3	The F RIFE 2.4 in	River Ri -18) wa RIFE-	ibble hous as plotted 19	seboat d incorrec	ose rate datu ctly, it is show	m for 2012 wn correcte	(figure 2.3, ed in Figure
	134, Table 2.18	Sellat below and fi	Sellafield. These are small changes to the total dose shown below. They apply to relevant points of text, tables (1.2 and 2.18) and figure 2.6.					
Exposed	Exposure, mSv per	vear						
population	Total Seafo (nucle indus discha	od Sea ar (ot try dis arges)	afood her charges)	Other local food	External radiation from int areas, riv banks ou fishing g	Intakes o sediment ertidal and wate /er jear	f Gaseous plume er related pathways	Direct radiation from site
<i>Total dose</i> – maximu effect of gaseous rel and direct radiation	m ease sources							
Infant root vegetable consumers	e 0.011 –	-		0.011	-	-	-	-
	196, Table 7.7	Disch Oil & (Onsl	arge da Gas (C nore). T	ta reporte Offshore) s his has be	d previe should l een corr	ous to RIFE- nave been cla ected for RIF	18 classifie assified as (FE-18 onwa	d as Dil & Gas ards.
RIFE-19 2013	183, Table 6.1	Cardi specifi of tex	ff, these fic asse at, table	e are smal essments s s (1.2B, 1	l chang hown b .4 and 6	es to the <i>tota</i> elow. They a 5.1) and figur	<i>l dose</i> and pply to rele e (1.3)	source- evant parts
Site	Exposed	Exposure	Exposure, mSv per year					
	population ^a	Total	Fish shell	and Oth fish loc	ner al food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site
<i>Total dose</i> – liquid discharges	Adult occupants over sediment	0.006	<0.0	005 –		0.005	-	_
Source specific doses	Prenatal children of seafood consumers	0.009	<0.0	005 –		0.009	-	-
	41, Figure 2.13	The c RIFE 2.13 i	obalt-6 -19) wa in RIFE	0 liquid d as plotted 2-20	ischarge incorrec	e datum for 2 ctly, it is show	2013 (Figur wn correcte	e 2.13, ed in Figure
	247, Appendix A2.1	Chap with :	Chapelcross, replace All other nuclides limit of 7.50E+09 Bq with 5.15E+09 Bq					

	Page, Section	Comment				
RIFE-19 2013	109, Figure 3.5	The discharge data for ⁶⁰ Co and ¹³⁷ Cs for 2013 (figure 3.5) were plotted incorrectly, they are shown corrected in Figure 3.5 in RIFE-20				
	232, Table 8.15	Eu-155 results have be	een revised			
	Location	Sample source	reported ¹⁵⁵ Eu	revised ¹⁵⁵ Eu		
	Firth of Cludo	East of Gull Point	-0.21	0.72		

Clyde Estuary	Kempoch Point	<0.43	2.7
Clyde Estuary	The Hole	<0.50	2.1
Firth of Clyde	East of Brodick	<0.39	1.8
Firth of Clyde	East of Johnston's Point	<0.22	0.81
Firth of Clyde	SW of Lady Isle	<0.36	2.1
Firth of Clyde	East of Gull Point	<0.21	0.72

33, Table 1.2 Some data was missing from Table 1.2 C (electronic version only), revised table shown below.

Site	Representative person ^a	Exposure, mSv		
		Total	Dominant contributions ^b	
C All sources				
Aldermaston and Burghfield	Infant milk consumer	<0.005	Milk, ³ H ^c , ¹³⁷ Cs ^c , ²³⁸ U	
Amersham	Local adult inhabitant (0–0.25km)	0.22	Direct radiation	
Barrow	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment	
Berkeley and Oldbury	Adult occupant over sediment	0.010	Gamma dose rate over sediment	
Bradwell	Prenatal child of green vegetable consumers	<0.005	Green vegetables, potatoes, root vegetables, ¹⁴ C	
Capenhurst	Local inhabitant aged 10y (0–0.25km)	0.080	Direct radiation	
Cardiff	Infant milk consumer	0.010	Milk, ¹⁴ C, ³² P ^c	
Chapelcross	Infant milk consumer	0.024	Milk, ⁹⁰ Sr, ²⁴¹ Am ^c	
Derby	Adult consumer of locally sourced water	<0.005	Water, ⁶⁰ Co ^c	
Devonport	Adult fish consumer	<0.005	Fish, ¹⁴ C, ²⁴¹ Am ^c	
Dounreay	Adult green vegetable consumer	0.012	Domestic fruit, potatoes, root vegetable: 129 c, 238 Pu ^c , 239/240 Pu ^c , 241 Am ^c	
Dungeness	Local adult inhabitant (0.5–1km)	0.021	Direct radiation	
Faslane	Adult occupant over sediment	<0.005	Gamma dose rate over sediment	
Hartlepool	Local adult inhabitant (0–0.25km)	0.024	Direct radiation, gamma dose rate over sediment	
Harwell	Prenatal child of local inhabitants (0–0.25km)	0.010	Direct radiation	
Heysham	Adult mollusc consumer	0.028	Fish, gamma dose rate over sediment,	
,			molluscs, ¹³⁷ Cs, ^{239/240} Pu, ²⁴¹ Am	
Hinkley Point	Adult occupant over sediment	0.022	Gamma dose rate over sediment	
Hunterston	Prenatal child of local inhabitants (0.25–0.5km)	0.021	Direct radiation	
LLWR near Drigg ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, ¹²⁹ I ^c , ²¹⁰ Po	
Rosyth	Adult occupant over sediment	<0.005	Gamma dose rate over sediment	
Sellafield ^{e,g}	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment	
Sizewell	Local adult inhabitant (0–0.25km)	0.021	Direct radiation	
Springfields	Adult occupant on a houseboat	0.060	Gamma dose rate over sediment	
forness	Local adult inhabitant (0.5–1km)	0.020	Direct radiation	
Trawsfynydd	Infant local inhabitant (0.25–0.5km)	0.017	Milk, ¹⁴ C, ²⁴¹ Am	
Whitehaven ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, ¹²⁹ I ^c , ²¹⁰ Po	
Winfrith	Infant milk consumer	< 0.005	Milk, ¹⁴ C	
Wylfa	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment	

Selected on the basis of providing the highest dose from the pathways associated with the sources as defined in A, B or C

Pathways and radionuclides that contribute more than 10% of the total dose. Some radionuclides are reported as being at the limits of detection and based on these measurements, an upper estimate of dose is calculated
 The assessed contribution is based on data being wholly at limits of detection

The effects of gaseous discharges and direct radiation are not assessed for this site
The effects of liquid discharges and direct radiation are not assessed for this site
The effects of liquid discharges from Sellafield, Whitehaven and LLWR near Drigg are considered together when assessing exposures
at these sites because their effects are manifested in a common area of the Cumbrian coast
The doses from man-made and naturally occurring radionuclides were and 0.021 mSv respectively. The source of naturally
The doses from man-made and naturally occurring radionuclides were and the state of the source of naturally
The doses from man-made and naturally occurring radionuclides were assessed on the state of the state of the source of naturally
The doses from man-made and naturally occurring radionuclides were assessed on the state of the state of the source of naturally
The doses from man-made and naturally occurring radionuclides are assessed on the state of the state of the source of naturally
The doses from man-made and naturally occurring radionuclides are assessed on the state of the state of the source of naturally
The doses from man-made and naturally occurring radionuclides are assessed on the state of the state of the state of the source of naturally
The source of naturally occurring radionuclides are assessed on the state of the s

occurring radionuclides was a phosphate processing works near Sellafield at Whitehaven. Minor discharges of radionuclides were also made from the LLWR near Drigg into the same area ⁹ The highest exposure due to operations at Sellafield was to a person living on a houseboat near Barrow

	Page, Section	Comment
RIFE-20 2014	201, Table 8.1	Iodine-129 data were entered incorrectly and should be removed with the exception of Alderney <i>Fucus vesiculosus</i> which was undertaken by radiochemistry. All other results reported as ¹²⁹ I were actually ¹³¹ I.
RIFE-17-20 2014	86, Table 2.11	The units of Mean beta dose rate in tissue should read uSvh ⁻¹
RIFE-21 2016	Page 44, Section 2	The two sentences starting "During the financial year", should be replaced with "During the financial year, 2015/16, 460 tonnes of spent oxide fuel was reprocessed in THORP, compared with an original target of 435 tonnes, and the highest reprocessing throughput since NDA too ownership of the site. The reprocessing of spent Magnox fuel for 2015/16 was a total of 390 tonnes of fuel, compared with an original performance target of 477 tonnes." The footnote is not correct and no longer applies.
	Page 50, Figure 2.8	The carbon-14, strontium-90 and caesium-137 discharge data for 2015 (figure 2.8) were plotted incorrectly, it is shown corrected in Figure 2.9 in RIFE-22.
	Page 98, Section 3.2	Replace Iodine-125 with iodine-131 (twice).
	Page 143, Table 4.9(a)	The concentration of plutonium-239+240 in sediment (pipeline) was 109 Bq kg ⁻¹ .
	Page 161, Table 5.1	Devonport, the total dose of breakdown of "External radiation from intertidal areas or river banks" in the table should read <0.005, the table should read.

Site	Representative person ^{a,b}	Exposure, mSv per year					
		Total	Fish and shellfish	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways
Devonport							
<i>Total dose</i> – all sources	Adult fish consumers	<0.005	<0.005	-	<0.005	-	-
RIFE-22 2017	Page 135, 4.2(b)	Table	The mean	gamma dose r	ate for Lydney	Rocks shou	ld read 0.099.
RIFE-22 2017	Page 246,	Table A2.3	Niobium-84 should read Niobium-94.				

Comment

Previous RIFE reports Gaseous discharges of krypton-85 from Dounreay Fast Reactor

In May 2016, DSRL notified SEPA of the identification of the release of unmonitored krypton-85 gaseous discharges through the authorised discharge outlet at the DFR facility (see table A2.5 RIFE-22 for more detail). The krypton-85 discharge data have been revised and are presented below.

Year	Revised Discharge (Bq)	Revised % of annual limit
1995	1.46E+08	37
1996	1.47E+08	37
1997	1.25E+08	31
1998	1.25E+08	31
1999	1.25E+08	31
2000	1.26E+08	31
2001	1.25E+08	31
2002	5.31E+08	130
2003	3.57E+08	89
2004	8.35E+07	21
2005	2.37E+07	5.9
2006	2.37E+07	5.9
2007	2.55E+07	6.4
2008	3.04E+07	7.6
2009	3.61E+07	9.0
2010	5.89E+07	15
2011	9.29E+07	23
2012	9.68E+07	24
2013	1.07E+09	270
Discharge authorisation re	evised 2014	
2014	2.58E+08	<1
2015	7.92E+08	<1

Gaseous Discharges of Alpha and Beta at Sellafield The published gaseous discharges of alpha and beta at Sellafield in the years, 1996, 1998-2001 and 2005-6 were reported incorrectly. The revised data is given below, the % of annual limit for Alpha in 1997 should read 12% (not 1.2%).

Year	Alpha (Bq)	% of annual Limit	Beta (Bq)	% of annual Limit
1996	1.80E+08	11	3.40E+09	7.1
1998	8.20E+07	4.8	1.60E+09	3.3
1999	1.70E+08	10	2.20E+09	4.6
2000	9.00E+07	5.3	1.10E+09	2.3
2001	7.20E+07	3.7	9.70E+08	<1
2005	8.90E+07	10	1.70E+09	4.0
2006	1.10E+08	13	2.00E+09	4.8

Previous Table A2.1 RIFE reports (RIFE 19–21

inclusive)

Gaseous discharges from Chapelcross

Replace the Tritium and all other radionuclides discharge limits with 7.50E+14 and 2.50E+09, respectively. The authorisation was revised 1 May 2013.

Previous RIFE reports (RIFE 2–12 inclusive)

Page, Section

Table A2.1

Comment

Previous RIFE reports (RIFE 15-22 inclusive) Gaseous Discharges from Dounreay

In April 2017, DSRL notified SEPA that incorrect duct flowrate information had been used in the calculation of gaseous tritium and non-alpha discharges from the PFR facility. The revised data for tritium and non-alpha discharges are shown below. Values for 2014 are for the period May to December (see RIFE 21 for more details).

	Year	Revised Discharges	Revised % of annual limit
Prototype Fast Reactor:	2009	2.55E+11	2.4
Tritium	2010	7.19E+10	<1
	2011	4.74E+10	<1
	2012	9.56E+10	<1
	2013	6.18E+09	<1
Discharge authorisation revised 2014:	2014	8.05E+07	4.7
Non-alpha	2015	1.21E+08	7.9
	2016	1.11E+08	6.6
Discharge authorisation revised 2014:	2014	3.25E+11	1.9
Tritium	2015	4.33E+10	<1
	2016	4.46E+10	<1